The Evaluation of the Relationship Between PreService Elementary Mathematics Teachers' Mathematical Modeling and Reading Comprehension Skills

Problemin ne sorduğunu anlamada yaşanacak sorun, matematiksel modelleme sürecini doğrudan etkileyecektir. Bu bağlamda araştırmanın amacı; ilköğretim matematik öğretmen adaylarının okuduğunu anlama becerisi ile matematiksel modellemeyi gerektiren gerçek bir yaşam problemini anlama becerisi arasında bir ilişki olup olmadığını araştırmaktır. Elde edilecek bulguların, matematiksel modelleme yeterliğini etkileyen matematik dışı faktörlerin ortaya konması ayrıca, modelleme yeterliğinin geliştirilmesi için düzenlenecek eğitim ortamlarının planlanması açısından önemli olduğu düşünülmektedir.Araştırmaya, 4. sınıfta öğrenim gören 38 ilköğretim matematik öğretmeni adayı katılmıştır. Araştırmanın amacı doğrultusunda, öğrenci grubuna önce matematiksel modelleme ile ilgili bir problem sorulmuş, sonra ise okuduğunu anlama becerilerini ölçen çoktan seçmeli bir test uygulanmıştır. Matematiksel modelleme problemine dayanarak öğrenciler dört kategoriye ayrılmış ve bu kategorilerde yer alan öğrencilerin kavrama testinden aldıkları puanlar arasında bir fark olup olmadığına KruskalWallis ve Mann-Whitney U testleriyle bakılmıştır. Sonuç olarak, matematiksel modelleme problemini iyi kavrayanlar kategorisinde yer alan öğrencilerin okuduklarını diğer kategoridekilere göre daha iyi anladıkları ortaya çıkmıştır

İlköğretim Matematik Öğretmeni Adaylarının Matematiksel Modelleme ile Okuduğunu Anlama Becerileri Arasındaki İlişkinin Değerlendirilmesi

The purpose of this study was to investigate whether there is a relationship between pre-service teachers' reading comprehension and mathematical modeling skills. 38 students who were seniors majoring in the Department of Elementary Mathematics Education participated in this study. Students were asked to solve the problem given, and then they took a multiple-choice test that measures their comprehension skills. After examining students' problem solving strategies, those who used similar strategies were grouped together. It was determined that there were four groups formed based on understanding the problem. Reading comprehension test scores were used to check whether four groups of students significantly differed from each other, and Kruskal-Wallis and Mann-Whitney U tests were employed. It was found that there was a positive correlation between reading comprehension skills and understanding the problem. This finding is important in terms of presenting non-mathematical factors affecting modeling skills

___

  • Ärlebäck, J. B., & Bergsten, C. (2010). On the use of realistic Fermi problems in introducing mathematical modelling in upper secondary mathematics. In R. A.
  • Lesh, P. L. Galbraith, W. Blum & A. Hurford (Eds.), Modeling Students' Mathematical Modeling Competencies. ICTMA 13 (pp. 597-609). NY: Springer Bergqvist, E. & Österholm, M. (2010). A theoretical model of the connection between the process of reading and the process of solving mathematical tasks. In C.
  • Bergsten, E. Jablonka & T. Wedege (Eds.) Mathematics and mathematics education: Cultural and social dimensions. Proceedings of MADIF 7, The Seventh Mathematics Education Research Seminar, Stockholm, January 26-27, 2010 (pp. 47-57). Linköping, Sweden: SMDF.
  • Berry, J., & Houston, K. (1995). Mathematical modelling. Bristol: J. W. Arrowsmith Ltd.
  • Blomhoj, M. (1993). Modellerings betydning for tilegnelsen af matematikse bergerber [The significance of modelling for the acquisition of mathematical concepts]. Nordisk Matematikkdidaktik, 1, 18-39.
  • Blomhoj, M., & Jensen, T.H. (2003). Developing mathematical modelling competence: Conceptual clarification and educational planning. Teaching Mathematics and its Applications, 22(3), 123-139.
  • Blum, W. (1991). Applications and modelling in mathematics teaching - A review of arguments and instructional aspects. In M. Niss, W. Blum, & I. Huntley (Eds.), Teaching of mathematical modelling and applications (pp 10-29). Chichester: Ellis Horwood.
  • Blum, W. (1996). Anwendungsbezüge im Mathematikunterricht - Trends und Perspektiven. Schriftenreihe Didaktik der Mathematik, 23, 15-38.
  • Blum, W., & Ferri, B. R. (2009). Mathematical modelling: Can it be taught and learnt? Journal of Mathematical Modelling and Application, 1(1), 45-58.
  • Blum, W., & Kaiser, G. (1997). Vergleichende empirische Untersuchungen zu mathematischen Anwendungsfähigkeiten von englischen und deutschen Lernenden. Unpublished application to Deutsche Forschungsgesellschaft.
  • Caldwell, J. S. (2008). Comprehension assessment, a classroom guide. New York: The Guilford Pub.
  • Christiansen, I. (2001). The effect of task organisation on classroom modelling activities. In J. Matos, W.Blum, K. Houston, & S. Carreira (Eds.), Modelling and mathematics education, ICTMA 9: Applications in science and technology (pp. 311- 320). Chichester: Horwood Publishing.
  • Crouch, R., & Haines, C. (2004). Mathematical modelling: Transitions between the real world and the mathematical model. International Journal of Mathematical Education in Science and Technology, 35(2), 197-206.
  • Doerr, H. M. (1997). Experiment, simulation and analysis: An integrated instructional approach to the concept of force. International Journal of Science Education, 19, 265-282.
  • Erdoğan, A. (2010). Primary teacher education students' ability to use functions as modeling tools. Procedia Social and Behavioral Sciences, 2, 4518-4522.
  • Ewa, B., & Österholm, M. (2010, January). A theoretical model of the connection between the process of reading and the process of solving mathematical tasks. Paper presented at the 7th Swedish Mathematics Education Research Seminar, Stockholm, Sweden.,
  • Ferri, B R. (2006). Theoretical and empirical differentiations of phases in the modelling process. ZDM, 38(2), 86-95.
  • Ferri, B. R. (2007). Modelling problems from a cognitive perspective. In C. Haines, P. Galbraith, W. Blum, & S. Khan (Eds.), Mathematical modelling, ICTMA 12: Education, Engineering and Economics (pp. 260-270). Chichester, UK: Horwood Publishing.
  • Ferri, B. R. (2010). On the influence of mathematical thinking styles on learners' modelling behaviour. Journal für Mathematik-Didaktik, 31(1), 99-118.
  • Galbraith, P., & Stillman, G (2001). Assumptions and Context: pursuing their role in modelling activity. In J. Matos, S. Houston, W. Blum & S. Carreira (Eds.), Modelling and Mathematics Education: Applications in Science and Technology (pp. 317-327), Chichester: Horwood.
  • Galbraith, P., & Stillman, G (2001). Assumptions and Context: pursuing their role in modelling activity. In J. Matos, S. Houston, W. Blum & S. Carreira (Eds.), Modelling and Mathematics Education: Applications in Science and Technology (pp. 317-327), Chichester: Horwood.
  • Galbraith, P., & Stillman, G. (2006). A framework for identifying student blockages during transitions in the modelling process. ZDM, 38(2), 143-162.
  • Gregersen, P., & Jensen, T. H. (1998). Problemlosning og modellering i en almendannende matematikundervisning [Problem solving and modelling in general mathematics teaching] (Tech. Rep. No. 353). Roskilde University, Denmark: IMFUFA.
  • Haines, C., Crouch, R., & Davies, J (2001). Understanding students' modelling skills. In J. Matos, W. Blum, K. Houston, & S. Carreira (Eds.), Modelling and mathematics education, ICTMA 9: Applications in science and technology (pp. 366-380). Chichester: Horwood Publishing.
  • Hodgson, T. (1997). On the use of open-ended, real-world problems. In K. Houston, W. Blum, I. Huntley, & N. T. Neill (Eds.), Teaching and learning mathematical modelling (pp. 211-218). Chichester: Albion Publishing Ltd.
  • Ikeda, T., & Stephens, M. (2001). The effects of students'discussion in mathematical modelling. In J. F. Matos, W. Blum, S. K. Houston, & S. P. Carreira (Eds.), Modelling and mathematics education (pp. 381-400). Chichester: Horwood Publishing.
  • Kaiser, G., & Sriraman, B. (2006). A global survey of international perspectives on modelling in mathematics education. Zentralblatt für Didaktik der Mathematik, 38(3), 302-310.
  • Kaiser, G. (1986). Anwendungen im Mathematik-unterricht. Bad Salzdetfurth: Franzbecker.
  • Kaiser, G. (1991). Application-orientated mathematics teaching: A survey of the theoretical debate. In M. Niss, W. Blum, & I. Huntley (Eds.), Teaching of Mathematical Modelling and Applications. Chichester: Ellis Horwood.
  • Kaiser, G. (1995). Realitätsbezüge im Mathematikunterricht. Ein Überblick über die aktuelle und historische Diskussion. In G. Graumann, T. Jahnke, G. Kaiser, & J. Meyer (Eds.), Materialien für einen realitätsbezogenen Mathematikunterricht, (Vol. 2, pp. 66-84). Hildesheim: Franzbecker.
  • Kaiser, G. (2007). Modelling and modelling competencies in school. In C. Haines, P. Galbraith, W. Blum, & S. Khan (Eds.), Mathematical modelling, ICTMA 12: Education, engineering and economics: Proceedings from the twelfth international conference on the teaching of mathematical modelling and applications (pp. 110- 119). Chichester: Horwood.
  • Kaiser, G., Blomhoj, M., & Sriraman, B. (2006). Towards a didactical theory for mathematical modelling. ZDM, 38(2), 82-85.
  • Klymchuk, S. S. & Zverkova T. S. (2001). Role of mathematical modelling and applications in university service courses: An across countries study. In J. F. Matos, W. Blum, S. K. Houston, & S. P. Carreira (Eds.) Modelling, applications andMathematics Education - Trends and Issues (pp. 227-235). Chichester, UK: Ellis Horwood.
  • Leiss, D. (2007). Lehrerinterventionen im selbständigkeitsorientierten Prozess der Lösung einer mathematischen Modellierungsaufgabe. Hildesheim: Franzbecker.
  • Lesh, R. A., & Zawojewski, J. S. (2007). Problem solving and modeling. In F. Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 763-804). Greenwich, CT: Information Age Publishing.
  • Lesh, R., & Doerr, H. (Eds.). (2003). Beyond constructivism - models and modeling perspectives on mathematics problem solving, learning and teaching. Mahwah: Lawrence Erlbaum.
  • Light, G.J., & DeFries, J.C. (1995). Comorbidity of reading and mathematics disabilities: Genetic and environmental etiologies. Journal of Learning Disabilities, 28, 96-106.
  • Lindeman, J. (2000). ALLU, Ala-Asteen Lukutesti: Tekniset tiedot [ALLU Reading Test For Primary School: Technical information]. Turku, Finland: University of Turku Centre for Research on Learning.
  • Lingefjärd, T. (2002). Mathematical modeling for preservice teachers: A problem from anesthesiology. The International Journal of Computers for Mathematical Learning 7(2), pp. 117-143.
  • Ludwig, M., & Xu, B. (2010). A comparative study of modelling competencies among Chinese and German students. Journal for Didactics of Mathematics, 31(1), 77-97.
  • Maaß, K. (2004): Mathematisches modellieren im unterricht - ergebnisse einer empirischen studie. Hildesheim, Berlin: Verlag Franzbecker. Maaß, K. (2006). What are modelling competencies? ZDM, 38(2), 113-142.
  • Matos, J., & Carreira, S. (1995). Cognitive processes and representations involved in applied problem solving. In C. Sloyer, W. Blum, & I. Huntley (Eds.), Advances and perspectives in the teaching of mathematical modeling and applications, ICTMA 6 (pp. 71-80). Yorklyn: Water Street Mathematics.
  • McLone, R. R. (1976). Mathematical modelling-the art of applying mathematics. In R. R. McLone & J. G. Andrews (Eds.), Mathematical modelling. London: Butterworth and Co Press.
  • Mousoulides, N., & English, L. D. (2008). Modeling with data in Cypriot and Australian classrooms. Proceedings of the 32nd International Conference of the International Group for the Psychology of Mathematics Education, 3, 423-430.
  • Niss, M. (1989). Aims and scope of applications and modelling in mathematics curricula. In W. Blum, et al. (Eds.). Application and modelling in learning and teaching mathematics (pp. 22-31). Chichester: Ellis Horwood.
  • Niss, M. (2001). University mathematics based on problem-oriented student projects: 25 years of experiences with the Roskilde model. In D. Holton (Ed.), The teaching and learning of mathematics at university level: An ICMI study (pp. 405-422). Dordrecht: Kluwer Academic Publishers.
  • Niss, M. (2004). Mathematical competencies and the learning of mathematics: The Danish KOM project. In A. Gagatsis, & S. Papastavridis (Eds.), Proceedings of the 3rd Mediterranean conference on mathematical education (pp. 115-124). Athens, Greece: Hellenic Mathematical Society and Cyprus Mathematical Society. Organisation for Economic Co-operation and Development. (2007). PISA 2006 - Science competencies for tomorrow's world (Vol. 1 & 2). Paris: OECD. of modelling for the acquisition of mathematical concepts). Nordisk Matematikkdidaktik, 1, 18.
  • Polya, G. (1945). How to solve it. Princeton, NJ: Princeton University Press. Randi, J., Grigorenko, E., L., & Sternberg, R. J. (2005). Revisiting definition of reading comprehension: Just what is reading comprehension anyway. In S. E. Israel, C. C. Block, K. L. Bauserman, & K. Kinnucan-Welsch (Eds.), Metacognition in literacy learning (pp. 19-40). Matwah, NJ: Lawrence Erlbaum Associates.
  • Stacey, K. (1991). Teaching mathematical modelling. In J. O'Reilly, & S. Wettenhall (Eds.), Mathematics: IDEAS (pp. 221-227). Melbourne: Mathematical Association of Victoria.
  • Tanner, H., & Jones, S. (1995). Developing metacognitive skills in mathematical modelling - a socio-contructivist interpretation. In C. Sloyer, W. Blum, & I. Huntley (Eds.), Advances and perspectives in the teaching of mathematical modelling and applications (pp. 61-70). Yorklyn: Water Street Mathematics.
  • Tuohimaa P. M., Aunola, K., ve Nurmi, J. E. (2008). The Association Between Mathematical Word Problems and Reading Comprehension. Educational Psychology, 28(4), 409-426.
  • Van Dijk, T. A., & Kintsch, W. (1983). Strategies of discourse comprehension. New York: Academic Press.
Kuramsal Eğitimbilim Dergisi-Cover
  • ISSN: 1308-1659
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2008
  • Yayıncı: Afyon Kocatepe Üniversitesi Eğitim Fakültesi
Sayıdaki Diğer Makaleler

İlköğretim Matematik Öğretmeni Adaylarının Matematiksel Modelleme ile Okuduğunu Anlama Becerileri Arasındaki İlişkinin Değerlendirilmesi

Alattin Ural, Hakan Ülper

Öğretmen Adaylarının Sınıf İçi Disiplin Sağlamada Ödül Uygulamalarını Tercih Etme Düzeylerinin İncelenmesi

Çavuş Şahin, M. Kaan Demir, Osman Yılmaz Kartal

İlköğretim Beşinci Sınıf Öğrencilerinin İşlevsel Okuryazarlık Düzeylerinin Aile Değişkeninin Özelliklerine Göre İncelenmesi

Emine Gül Özenç

Sosyal Bilgiler Öğretmenliği Lisans Programındaki Derslerin Öğrenilme Düzeyleri (Öğretmen Adaylarının Öznel Algıları

Tekin ÇELİKKAYA

Üniversite Öğrencilerinin Okulu Bırakma Eğilimleri ve Nedenleri

Hüseyin Şimşek

University Students’ Tendencies Toward and Reasons Behind Dropout

Hüseyin ŞİMŞEK

Matematik İşlem Testini Türkçe’ye Uyarlama Çalışması ve Öğretmen Adaylarının Matematik Problemlerini Çözme Tercihleri

Güney Hacıömeroğlu, Erhan Selçuk Hacıömeroğlu

The Evaluation of the Relationship Between PreService Elementary Mathematics Teachers' Mathematical Modeling and Reading Comprehension Skills

Alattin URAL, Hakan ÜLPER

Bilim ve Sanat Merkezlerinde Çalışan Öğretmenlerin Tükenmişlik Düzeyleri Üzerine Bir Araştırma

Sinan Yörük, Tuğba Akar, Firdevs Çimenci, Salih Akyel

Sosyal Bilgiler Öğretmenliği Lisans Programındaki Derslerin Öğrenilme Düzeyleri (Öğretmen Adaylarının Öznel Algıları)

Tekin Çelikkaya