Renin-Anjiyotensin-Aldosteron Sistemine Etkili Tıbbi Bitkilerin Potansiyel Kullanımı

Renin-Anjiyotensin-Aldosteron sistemi (RAAS), kan basıncının, elektrolit dengesinin ve vasküler büyümenin düzenlenmesindeki önemi ile tanınmaktadır. RAAS’ın aşırı aktivasyonu koroner kalp hastalıkları, hipertansiyon, kronik böbrek yetmezliği, diyabet gibi morbidite ve mortalite oranları yüksek kronik hastalıkların gelişiminde önemli rol oynamaktadır. Bu aktivasyon ile ortaya çıkan hastalıklar yine RAAS bileşenlerinin anjiyotensin reseptör blokerleri (ARB) başta olmak üzere çeşitli basamaklarda farmakolojik ajanlar ile inhibe edilmesi ile yapılmaktadır. Öte yandan halk tıbbında yüzyıllardır pek çok bitki türünün geleneksel olarak hastalıkları tedavi edici etkilerinden ötürü kullanıldığı bilinmektedir. Günümüzde gelişen teknolojiler ile birlikte bitki türlerinin taşıdıkları fitobileşenlerin kimyasal yapıları aydınlatılmakta, biyolojik aktiviteleri ile ilişkileri anlaşılır hale gelmektedir. Hastalıkların tedavisinde kullanılan tıbbi bitki türlerinin incelenmesi yeni ilaç moleküllerinin keşfi ve geliştirilmesinde kilit rol oynayabilir. Bunun yanı sıra uygun şartlarda hazırlanmış standardize bitkisel preparatların hasta yaşam kalitesinin yükseltilmesi, kronik hastalıkların önlenmesi ve tedavilerinde destekleyici kullanımları farmakoekonomiye önemli faydalar sağlayabilir. Bu çalışma kronik hastalıkların gelişiminde kritik rol oynayan, RAAS aracılığı ile kardiyovasküler, solunum, endokrin ve üriner sistem üzerine etki ettikleri in vivo, in vitro ve klinik çalışmalar ile gösterilmiş 11 tıbbi bitki türü üzerinde yürütülen araştırma sonuçlarını derlemektedir. Seçilen bitki türleri Allium sp, Camelia sinensis, Nigella sativa, Olea europaea, Hibiscus sabdarffa, Curcuma longa, Crataegus sp, Rauwolfia serpentina, Rosmarinus officinalis, Crocus sativus ve Ephedra sinica olarak belirlenmiştir.

___

  • 1. Abdel-Rahman, R. F., Hessin, A. F., Abdelbaset, M., Ogaly, H. A., Abd-Elsalam, R. M., & Hassan, S. M. (2017). Antihypertensive effects of roselle-olive combination in L-NAME-induced hypertensive rats. Oxidative Medicine and Cellular Longevity.
  • 2. Ahn, Y. M., Choi, Y. H., Yoon, J. J., Lee, Y. J., Cho, K. W., Kang, D. G., & Lee, H. S. (2017). Oleanolic acid modulates the renin-angiotensin system and cardiac natriuretic hormone concomitantly with volume and pressure balance in rats. European journal of pharmacology, 809, 231-241.
  • 3. Akinyemi, A. J., Thome, G. R., Morsch, V. M., Stefanello, N., Goularte, J. F., Belló-Klein, A., Oboh, G., & Schetinger, M. R. C. (2015). Effect of dietary supplementation of ginger and turmeric rhizomes on angiotensin-1 converting enzyme (ACE) and arginase activities in L-NAME induced hypertensive rats. journal of functional foods, 17, 792-801.
  • 4. Al-Qattan, K. K., Thomson, M., Jayasree, D., & Ali, M. (2016). Garlic attenuates plasma and kidney ACE-1 and AngII modulations in early streptozotocin-induced diabetic rats: renal clearance and blood pressure implications. Evidence-based Complementary and Alternative Medicine.
  • 5. Asdaq, S. M., & Inamdar, M. N. (2010). Potential of garlic and its active constituent, S-allyl cysteine, as antihypertensive and cardioprotective in presence of captopril. Phytomedicine, 17(13), 1016-1026.
  • 6. Aslan, R. (2016). Alternative and complementary approaches in medicine. 4(9), 363-371.
  • 7.Boozari, M., & Hosseinzadeh, H. (2021). Natural products for COVID‐19 prevention and treatment regarding to previous coronavirus infections and novel studies. Phytotherapy Research, 35(2), 864-876.
  • 8.Chukwuma, C. I., Matsabisa, M. G., Ibrahim, M. A., Erukainure, O. L., Chabalala, M. H., & Islam, M. S. (2019). Medicinal plants with concomitant anti-diabetic and anti-hypertensive effects as potential sources of dual acting therapies against diabetes and hypertension: A review. Journal of ethnopharmacology, 235, 329-360.
  • 9. Cuevas-Durán, R. E., Medrano-Rodriguez, J. C., Sánchez-Aguilar, M., Soria-Castro, E., Rubio-Ruíz, M. E., Valle-Mondragón, D., Sanchez-Mendoza, A., Torres-Narvaez, J. C., & Ibarra-Lara, L. (2017). Extracts of Crataegus oxyacantha and Rosmarinus officinalis attenuate ischemic myocardial damage by decreasing oxidative stress and regulating the production of cardiac vasoactive agents. International journal of molecular sciences, 18(11).
  • 10. Çiçek, Z., Akıllıoğlu, K., & Dogan, A. Lokal ve Sistemik Renin Anjiyotensin Sistemi. Arşiv Kaynak Tarama Dergisi, 28(4), 259-269.
  • 11. Dzau, V. (2005). The cardiovascular continuum and renin–angiotensin–aldosterone system blockade. Journal of hypertension, 23, 9-17.
  • 12. Eroğlu, İ. U. (2021). Güncel Veriler Işığında COVID-19 ve Renin Anjiyotensin Aldosteron Sistemi İlişkisi. Tepecik Eğit ve Araşt Hast Derg, 43(1), 86-93.
  • 13. Favre, G. A., Esnault, V. L., & Van Obberghen, E. (2015). Modulation of glucose metabolism by the renin-angiotensin-aldosterone system. American Journal of Physiology-Endocrinology and Metabolism, 308(6), 435-449.
  • 14. Guo, L., Guo, Y., Wu, P., Lu, F., Zhu, J., Ma, H., Yong, C., & Zhang, T. (2020). Camellia oil lowering blood pressure in spontaneously hypertension rats. Journal of Functional Foods, 70, 103915.
  • 15. Henriksen, E. J., & Prasannarong, M. (2013). The role of the renin-angiotensin system in the development of insulin resistance in skeletal muscle. Molecular and cellular endocrinology, 378(1-2), 15-22.
  • 16. Herrera-Arellano, A., Miranda-Sánchez, J., Ávila-Castro, P., Herrera-Álvarez, S., Jiménez-Ferrer, J. E., Zamilpa, A., Román-Ramos, R., Ponce-Monter, H., & Tortoriello, J. (2007). Clinical effects produced by a standardized herbal medicinal product of Hibiscus sabdariffa on patients with hypertension. A randomized, double-blind, lisinopril-controlled clinical trial. Planta medica, 73(01), 6-12.
  • 17. Hussain, M., & Awan, F. R. (2018). Hypertension regulating angiotensin peptides in the pathobiology of cardiovascular disease. Clinical and experimental hypertension, 40(4), 344-352.
  • 18. Idris-Khodja, N., & Schini-Kerth, V. (2012). Thymoquinone improves aging-related endothelial dysfunction in the rat mesenteric artery. Naunyn-Schmiedeberg's archives of pharmacology, 385(7), 749-758.
  • 19. Jaarin, K., Foong, W., Yeoh, M., Kamarul, Z., Qodriyah, H., Azman, A., Zuhair, J. S. F., Juliana, A., & Kamisah, Y. (2015). Mechanisms of the antihypertensiv effects of Nigella sativa oil in L-NAME-induced hypertensive rats. Clinics, 70, 751–757.
  • 20. Kamrani, Z., Javadi, B., Hayes, A., & Karimi, G. (2019). Potential angiotensin converting enzyme (ACE) inhibitors from Iranian traditional plants described by Avicenna’s Canon of Medicine. Avicenna Journal of Phytomedicine, 9(4), 291-309.
  • 21. Kayaalp, S.O. (Ed.). (2002). Tıbbi Farmakoloji. Hacettepe Taş.
  • 22. Kwon, Y. I. I., Vattem, D. A., & Shetty, K. (2006). Evaluation of clonal herbs of Lamiaceae species for management of diabetes and hypertension. Asia pacific journal of clinical nutrition, 15(1), 107.
  • 23. Lange-Jacobs, D., Shaikh-Kader, A., Thomas, B., & Nyakudya, T. T. (2020). An Overview of the Potential Use of Ethno-Medicinal Plants Targeting the Renin–Angiotensin System in the Treatment of Hypertension. Molecules, 25(9), 2114.
  • 24. Lekshmi, P. C., Arimboor, R., Nisha, V. M., Menon, A. N., & Raghu, K. G. (2014). In vitro antidiabetic and inhibitory potential of turmeric (Curcuma longa L) rhizome against cellular and LDL oxidation and angiotensin converting enzyme. Journal of food science and technology, 51(12), 3910-3917.
  • 25. Liu, Q., Tian, J., Xu, Y., Li, C., Meng, X., & Fu, F. (2016). Protective effect of RA on myocardial infarction-induced cardiac fibrosis via AT1R/p38 MAPK pathway signaling and modulation of the ACE2/ACE ratio. Journal of agricultural and food chemistry, 64(35), 6716-6722.
  • 26. Lacaille-Dubois, M. A., Franck, U., & Wagner, H. (2001). Search for potential angiotensin converting enzyme (ACE)-inhibitors from plants. Phytomedicine, 8(1), 47-52.
  • 27. Mei, J., Zhou, Y., Yang, X., Zhang, F., Liu, X., & Yu, B. (2021). Active components in Ephedra sinica Stapf disrupt the interaction between ACE2 and SARS-CoV-2 RBD: potent COVID-19 therapeutic agents. Journal of ethnopharmacology, 114303.
  • 28. Micucci, M., Bolchi, C., Budriesi, R., Cevenini, M., Maroni, L., Capozza, S., Chiarini, A., Pallavicini, M., Angeletti, A. (2020). Antihypertensive phytocomplexes of proven efficacy and well-established use: Mode of action and individual characterization of the active constituents. Phytochemistry, 170, 112222.
  • 29. Mnafgui, K., Khlif, I., Hajji, R., Derbali, F., Kraiem, F., Ellefi, H., Michel, T., Halabalaki, M., Skaltsounis, A. L., Elfeki, A., Gharsallah, N., & Allouche, N. (2015). Preventive effects of oleuropein against cardiac remodeling after myocardial infarction in Wistar rat through inhibiting angiotensin-converting enzyme activity. Toxicology mechanisms and methods, 25(7), 538-546.
  • 30. Nangaku, M., & Fujita, T. (2008). Activation of the renin-angiotensin system and chronic hypoxia of the kidney. Hypertension Research, 31(2), 175-184.
  • 31. Nurfaradilla, S. A., Saputri, F. C., & Harahap, Y. (2019). Effects of Hibiscus sabdariffa calyces aqueous extract on the antihypertensive potency of captopril in the two-kidney-one-clip rat hypertension model. Evidence-Based Complementary and Alternative Medicine, 2019.
  • 32. Nwachukwu, D. C., Aneke, E. I., Nwachukwu, N. Z., Azubike, N., & Obika, L. F. (2017). Does consumption of an aqueous extract of Hibscus sabdariffa affect renal function in subjects with mild to moderate hypertension?. The Journal of Physiological Sciences, 67(1), 227-234.
  • 33. Oboh, G., Akinyemi, A. J., & Ademiluyi, A. O. (2013). Inhibitory effect of phenolic extract from garlic on angiotensin-1 converting enzyme and cisplatin induced lipid peroxidation–in vitro. International journal of biomedical science: IJBS, 9(2), 98.
  • 34. Oğuz, D. A. (2009). Renin-anjiyotensin-aldosteron sistemi inhibisyonu ve kardiyovasküler koruma. 37(6), 4-12.
  • 35. Patel, B., Sharma, S., Nair, N., Majeed, J., Goyal, R. K., & Dhobi, M. (2021). Therapeutic opportunities of edible antiviral plants for COVID-19. Molecular and Cellular Biochemistry, 1-20.
  • 36. Persson, I. A., Josefsson, M., Persson, K., & Andersson, R. G. (2006). Tea flavanols inhibit angiotensin-converting enzyme activity and increase nitric oxide production in human endothelial cells. Journal of pharmacy and Pharmacology, 58(8), 1139-1144.
  • 37. Persson, I. A., Persson, K., Hägg, S., & Andersson, R. G. (2010). Effects of green tea, black tea and Rooibos tea on angiotensin-converting enzyme and nitric oxide in healthy volunteers. Public health nutrition, 13(5), 730-737.
  • 38. Plangar, A. F., Anaeigoudari, A., KhajaviRad, A., & Shafei, M. N. (2019). Beneficial cardiovascular effects of hydroalcoholic extract from crocus sativus in hypertension induced by angiotensin II. Journal of pharmacopuncture, 22(2), 95.
  • 39. Ranjini, H. S., Udupa, P. E., & Thomas, J. M. (2015). Angiotensin converting enzyme (ACE): inhibition of sheep kidney and lung ACE in vitro by Rauwolfia serpentina and allium sativum. Scholars Journal of Applied Medical Sciences, 3(5), 1936-1940.
  • 40. Ray, S., Dutta, M., Chaudhury, K., & De, B. (2017). GC–MS based metabolite profiling and angiotensin I-converting enzyme inhibitory property of black tea extracts. Revista Brasileira de Farmacognosia, 27, 580-586.
  • 41. Ribeiro-Oliveira Jr, A., Nogueira, A. I., Pereira, R. M., Boas, W. W. V., Dos Santos, R. A. S., & e Silva, A. C. S. (2008). The renin–angiotensin system and diabetes: an update. Vascular health and risk management, 4(4), 787.
  • 42. Rietz, B., Isensee, H., Strobach, H., Makdessi, S., & Jacob, R. (1993). Cardioprotective actions of wild garlic (Allium ursinum) in ischemia and reperfusion. Molecular and cellular biochemistry, 119(1), 143-150.
  • 43. Ryu, H. H., Kim, H. L., Chung, J. H., Lee, B. R., Kim, T. H., & Shin, B. C. (2011). Renoprotective effects of green tea extract on renin-angiotensin-aldosterone system in chronic cyclosporine-treated rats. Nephrology Dialysis Transplantation, 26(4), 1188-1193.
  • 44. Shafei, M. N., Faramarzi, A., Rad, A. K., & Anaeigoudari, A. (2017). Crocin prevents acute angiotensin II-induced hypertension in anesthetized rats. Avicenna journal of phytomedicine, 7(4), 345.
  • 45. Shenoy, V., Qi, Y., Katovich, M. J., & Raizada, M. K. (2011). ACE2, a promising therapeutic target for pulmonary hypertension. Current opinion in pharmacology, 11(2), 150-155.
  • 46. Tan, W. S. D., Liao, W., Zhou, S., Mei, D., & Wong, W. S. F. (2018). Targeting the renin–angiotensin system as novel therapeutic strategy for pulmonary diseases. Current opinion in pharmacology, 40, 9-17.
  • 47. Timurkaynak, D. T. (2009). Renin inhibisyonu nedir? Etki mekanizması. Türk Kardiyol Dern Arş, 37(7), 5-14.
  • 48. Tonguç Yayıntaş, Ö. (2019). Azerbaycan’ın monograflara giren şifalı bitkileri. Journal of Awareness, 3(Özel sayı), 455-470.
  • 49. Wang, D., Chai, X. Q., Magnussen, C. G., Zosky, G. R., Shu, S. H., Wei, X., & Hu, S. S. (2019). Renin-angiotensin-system, a potential pharmacological candidate, in acute respiratory distress syndrome during mechanical ventilation. Pulmonary pharmacology & therapeutics, 58, 101833.
  • 50. Younis, W. Schini-Kerth, V. B., da Silva, D. B., Junior, A. G., Bukhari, I. A., & Assiri, A. M.. (2019). Role of the NO/cGMP pathway and renin-angiotensin system in the hypotensive and diuretic effects of aqueous soluble fraction from Crataegus songarica K. Koch. Journal of ethnopharmacology, 249,112400.