Gerze Tavuğu ve Bazı Saf Hat Genotiplerinde Majör Doku Uyumluluğu Gen Kompleksi Polimorfizmi

Bu çalışmada Gerze tavuğu popülasyonuna ait 43 örnek ile ticari safhatlardan oluşturulan 50 örneklik Saf hat popülasyonunun majördoku uyumluluğu gen kompleksi (MHC) bakımından molekülerincelenmesi amaçlanmıştır. Allelik çeşitlilik, MHC içerisinde yer alanMCW0371 ve LEI0258 mikrosatellit lokuslarının PCR yöntemiyardımıyla çoğaltılarak elde edilen DNA fragmentlerinin agaroz jelelektroforezi ile ayrımlanması ile hesaplanmıştır. Gerzepopülasyonunda LEI0258 lokusunda elde edilen allel sayısı, etkiliallel sayısı, gözlenen heterozigotluk ve beklenen heterozigotlukdeğerleri sırasıyla; 16, 10.82, 0.67, 0.91, Saf hat popülasyonunda ise19, 11.84, 0.60, 0.92 olarak bulunmuştur. MCW0371 lokusu içinsırasıyla; Gerze popülasyonunda 3, 2.68, 0, 0.63 ve Saf hatpopülasyonunda 3, 1.96, 0, 0.49 olarak tespit edilmiştir.Popülasyonlar arasında Nei genetik uzaklık ve genetik benzerlikdeğerleri sırasıyla 0.419 ve 0.658 olarak hesaplanmıştır.Popülasyonlar arasında FST değeri 0.068 olarak bulunmuştur. Eldeedilen bulgular, içerdiği allel deseni bakımından Gerze tavuğununözgün bir genetik kaynak olarak korunmasının ve ıslahprogramlarına dahil edilmesinin önemli olduğu sonucuna varılmıştır.

Major Histocompatibility Gene Complex Polymorphism in Gerze Chicken and Some Pure Line Genotypes

The aim of this study was to molecularly investigate the major histocompatibility complex (MHC) polymorphisms of the Gerze chicken population of 43 samples and the commercial pure line population of 50 samples. Allelic diversity was calculated based on PCR amplification of MCW0371 and LEI0258 microsatellite loci in MHC and separation of DNA fragments by agarose gel electrophoresis. In the Gerze population, number of different alleles, number of effective alleles, observed heterozygosity and expected heterozygosity values were calculated as: 16, 10.82, 0.67, 0.91, whereas the values were determined as 19, 11.84, 0.60, 0.92 for the pure line population, respectively for LEI0258 locus. As for MCW0371 locus, the values were calculated as 3, 2.68, 0, 0.63 in the Gerze population and 3, 1.96, 0, 0.49 in the Pure line population, respectively. Nei’s genetic distance and genetic identity values between the populations were calculated as 0.419 and 0.658, respectively. The FST value among the populations was found to be 0.068. The findings revealed that Gerze chicken should be included in breeding programs as a unique genetic resource with its allelic richness.

___

  • Abasht B, Dekkers J, Lamont S 2006. Review of quantitative trait loci identified in the chicken. Poultry Science 85(12): 2079-2096.
  • Chazara O, Chang C-S, Bruneau N, Benabdeljelil K, Fotsa J-C, Kayang B B, Loukou N G E, OseiAmponsah R, Yapi-Gnaore V, Youssao I a K, Chen C-F, Pinard-Van Der Laan M-H, Tixier-Boichard M, Bed’hom B 2013. Diversity and evolution of the highly polymorphic tandem repeat LEI0258 in the chicken MHC-B region. Immunogenetics 65(6): 447- 459.
  • Chazara O, Juul-Madsen H R, Chang C-S, TixierBoichard M, Bed’hom B 2011. Correlation in chicken between the marker LEI0258 alleles and major histocompatibility complex sequences. BMC proceedings 5(4): S29.
  • Eimes J, Bollmer J, Whittingham L, Johnson J, Van Oosterhout C, Dunn P 2011. Rapid loss of MHC class II variation in a bottlenecked population is explained by drift and loss of copy number variation. Journal of Evolutionary Biology 24(9): 1847-1856.
  • Emara M, Kim H, Zhu J, Lapierre R, Lakshmanan N, Lillehojt H 2002. Genetic diversity at the major histocompatibility complex (B) and microsatellite loci in three commercial broiler pure lines. Poultry Science 81(11): 1609-1617.
  • Fadhil M, Mercan L 2016. Molecular characterization of mx gene polymorphism in gerze chicken breed and pure line chicken breed. Animal Research International 13(3): 2540.
  • Fulton J E, Juul-Madsen H R, Ashwell C M, Mccarron A M, Arthur J A, O'sullivan N P, Taylor R L, Jr. 2006. Molecular genotype identification of the Gallus gallus major histocompatibility complex. Immunogenetics 58(5-6): 407-421.
  • Goddard M E, Hayes B J 2009. Mapping genes for complex traits in domestic animals and their use in breeding programmes. Nature Reviews Genetics 10(6): 381-391.
  • Hoffmann I 2010. Climate change and the characterization, breeding and conservation of animal genetic resources. Animal genetics 41: 32- 46.
  • Izadi F, Ritland C, Cheng K M 2011. Genetic diversity of the major histocompatibility complex region in commercial and noncommercial chicken flocks using the LEI0258 microsatellite marker. Poultry Science 90(12): 2711-2717.
  • Mercan L, Bilgi F, Budak M 2019. Saf Gerze tavuğu ve Sinop ili köy tavuğu popülasyonlarının sekiz polimorfik mikrosatellit lokusu bakımından karşılaştırılması. Anadolu Tarım Bilimleri Dergisi 34(2): 164-171.
  • Mercan L, Okumuş A 2015. Genetic diversity of village chickens in Central Black Sea Region and commercial chickens in Turkey by using microsatellite markers. Turkish Journal of Veterinary & Animal Sciences 39(2): 134-140.
  • Miller M M, Taylor Jr R L 2016. Brief review of the chicken major histocompatibility complex: the genes, their distribution on chromosome 16, and their contributions to disease resistance. Poultry Science 95(2): 375-392.
  • Nei M 1977. F‐statistics and analysis of gene diversity in subdivided populations. Annals of human genetics 41(2): 225-233.
  • Ngeno K, Van Der Waaij E, Megens H, Kahi A, Van Arendonk J, Crooijmans R 2015. Genetic diversity of different indigenous chicken ecotypes using highly polymorphic MHC-linked and non-MHC microsatellite markers. Animal Genetic Resources/Resources génétiques animales/Recursos genéticos animales 56: 1-7.
  • Rauw W M, Kanis E, Noordhuizen-Stassen E N, Grommers F J 1998. Undesirable side effects of selection for high production efficiency in farm animals: a review. Livestock Production Science 56(1): 15-33.
  • Rousset F 2008. genepop’007: a complete re‐ implementation of the genepop software for Windows and Linux. Molecular ecology resources 8(1): 103-106.
  • Sarıca M, Türkoğlu M 2009. Tavukçuluktaki Gelişmeler ve Türkiye Tavukçuluğu. (Tavukçuluk Bilimi Yetiştirme ve Hastalıklar, Bey Ofset Matbaacılık, Ankara, Türkiye: Ed. Türkoğlu, M Sarıca, M) 1-25.
  • Schat K A, Skinner M A 2014. Avian Immunosuppressive Diseases and Immunoevasion. Elsevier, Ed. 275-297.
  • Siwek M, Slawinska A, Rydzanicz M, Wesoly J, Fraszczak M, Suchocki T, Skiba J, Skiba K, Szyda J 2015. Identification of candidate genes and mutations in QTL regions for immune responses in chicken. Animal genetics 46(3): 247-254.
  • Smouse R P P, Peakall R 2012. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28(19): 2537-2539.
KSÜ Tarım ve Doğa Dergisi-Cover
  • ISSN: 2619-9149
  • Yayın Aralığı: Yılda 6 Sayı
  • Başlangıç: 2018