BASINÇ RİJİTLİĞİNİN HİDROSTATİK BASINÇ ETKİSİ ALTINDAKİ KATMANLI KOMPOZİT SİLİNDİRLERİN BURULMALI BURKULMALARINA ETKİSİ

Bu çalışmada hidrostatik basınç altındaki ince ve orta kalınlıkta katmanlı kompozit kusursuzsilindirlerin burkulmasında basınç rijitliğinin etkisi araştırılmıştır. Sayısal neticeler dejenere-eğri birkabuk elemanı kullanılarak elde edilmiştir. Öncelikle bir doğrulama problem çözülmüş ve elemanbasınç rijitliğini içeren stabilite tahkiki için doğrulanmıştır. Daha sonra, dik-açılı ve eğik-açılı katmanlıkompozit silindirler seçilen uzunluk/çap değerleri ve katman düzenleri için incelenmiştir. Elde edilenneticeler basınç rijitliğinin özellikle kalın otrotropik silindirlerde burulmalı burkulmayı engellediğinigöstermektedir.

THE INFLUENCE OF PRESSURE STIFFNESS ON THE TORSIONAL BUCKLING OF LAMINATED COMPOSITE CYLINDERS UNDER EXTERNAL HYDROSTATIC PRESSURE

In this study, the influence of pressure stiffness on the torsional buckling of thin andmoderately thick laminated composite perfect cylinders under external hydrostatic pressure isinvestigated. A degenerated-curved shell element is used to obtain the numerical results. First, averification problem is solved and the element is validated for stability analysis including pressurestiffness. Then, cross-ply and angle-ply laminated composite cylinders are examined for selected lengthradiusratios and stacking sequences. The results obtained show that, pressure stiffness may have astabilizing effect against torsional buckling especially for thick orthotropic cylinders.

___

  • Seide P, Weingarten VI, Peterson JP., 1968, “Buckling of thin-walled circular cylinders”, NASA SP-8007.
  • Nemeth MP, Starnes Jr JH., 1998, “The NASA monographs on shell stability design recommendations: a review and suggested improvements”, NASA-TP1998-206290, National Aeronautics and Space Administration, Langley Research Center.
  • Koiter, W. T. 1967, “General equations of elastic stability for thin shells”, In: Proceedings, Symposium on the Theory of Shells to Honor Lloyd Hamilton Donnett pp. 187-227.
  • Schokker, A., Sridharan, S., Kasagi, A., 1996, “Dynamic buckling of composite shells”, Computers & Structures, 59(1), 43-53.
  • Sridharan, S., Kasagi, A., 1997, “On the buckling and collapse of moderately thick composite cylinders under hydrostatic pressure”, Composites Part B, 28B, 583-596.
  • Kardomateas, G.A., 1996, “Benchmark three-dimensional elasticity solutions for the buckling of thick orthotropic cylindrical shells”, Composites Part B, 27B, 569-580.
  • Kardomateas, G.A., 2000, “Effect of normal strains in buckling of thick orthotropic shells”, Journal of Aerospace Engineering, ASCE, 13(3), 85–91.
  • Cagdas IU, Adali S., 2011“Buckling of cross-ply cylinders under hydrostatic pressure considering pressure stiffness”, Ocean Engineering, 38: 559-569.
  • Cagdas, I. U. 2017, “Optimal design of variable stiffness laminated composite truncated cones under lateral external pressure”, Ocean Engineering, 145, 268-276.
  • Smitha, K. K., Nandakumar, C. G., 2018,“Assessment of Collapse Pressure of Laminated Composite Subsea Shells Subjected to Hydrostatic Follower Force”, Journal of The Institution of Engineers (India): Series A, 99(4), 617-626.
  • Khayat, M., Poorveis, D., Moradi, S., Hemmati, M., 2016,“Buckling of thick deep laminated composite shell”, Structural Engineering and Mechanics, 58(1), 59-91.
  • Khayat, M., Poorveis, D., Moradi, S., 2017, “Semi-Analytical Approach in Buckling Analysis of Functionally Graded Shells of Revolution Subjected to Displacement Dependent Pressure”, Journal of Pressure Vessel Technology, 139(6), 061202.
  • Basaglia, C., Camotim, D., & Silvestre, N., 2019, “GBT-based buckling analysis of steel cylindrical shells under combinations of compression and external pressure”, Thin-Walled Structures, 144, 106274.
  • Kant, T., 1992, “A general fibre-reinforced composite shell element based on a refined shear deformation theory”, Computers & Structures, 42(3), 381-388.
  • Cagdas, I. U., Adali, S., 2012a, “Effect of Fiber Orientation on Buckling and First-Ply Failures of Cylindrical Shear-Deformable Laminates”, Journal of Engineering Mechanics, 139(8), 967-978.
  • Cagdas, I., Adali, S., 2012b, “Design of a laminated composite variable curvature panel under uniaxial compression”, Engineering Computations: International Journal for Computer-Aided Engineering and Software, 29(1), 48-64.
  • Ram, K. S., Babu, T. S., 2002,“Buckling of laminated composite shells under transverse load”, Composite Structures, 55(2), 157-168.
  • Barbosa, J. A. T., Ferreira, A. J. M., 2009“Geometrically nonlinear analysis of functionally graded plates and shells”, Mechanics of Advanced Materials and Structures, 17(1), 40-48.
  • Bakshi, K., Chakravorty, D., 2014,“Geometrically linear and nonlinear first-ply failure loads of composite cylindrical shells”, Journal of Engineering Mechanics, 140(12), 04014094.
  • Öner, G. A., Temiz, Ş., Akbulut, H., Özel, A. 2007, “İnce cidarlı, çapraz takviyeli, tabakalı kompozit tüplerde sonlu elemanlar yöntemi ile burulmalı burkulma analizi”, Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 9(1), 35-44.
  • Shen, K. C., Pan, G., Lu J., 2017, “Buckling and layer failure of composite laminated cylinders subjected to hydrostatic pressure”, Science and Engineering of Composite Materials , 24(3), 415-422.
  • Reddy, J. N., 2003,Mechanics of laminated composite plates and shells: theory and analysis. CRC press. Messager, T., Pyrz, M., Gineste, B., Chauchot, P., 2002, “Optimal laminations of thin underwater composite cylindrical vessels”, Composite Structures, 58(4), 529-537.