SİLAH GERİ TEPME VE ŞAHLANMA TEST MAKİNASI TASARIMI VE SİMULASYONU

Ateşli silahların tasarımında mekanizma parçalarının ve tahrik sistemlerinin enerji ve kuvvet hesaplamaları, silahın konforu ve etkinliği açısından hayati önem arz etmektedir. Silah uzuvlarında oluşan kuvvetlerin bilinmesi, uzun ömürlü parçaların tasarımına olanak sağlar. Otomatik silahlarda patlamadan sonra açığa çıkan enerjinin bilinmesi ise gaz deliği çapının ve konumunun optimum hesaplanmasını mümkün kılar. Bu hesapların sonucunda daha konforlu ve performansı yüksek silahlar tasarlanabilir. Bu çalışma kapsamında; silah ateşlenmesinde oluşan tepme kuvvetini ve şahlanma momentini ölçebilen, iki serbestlik dereceli, gelen kuvvetleri sönümleyebilen rijit bir test makinasının Ansys/Workbench programı kullanarak yapısal analizleri, özgün tasarımı ve MATLAB/Simulink ile PID konum kontrol simülasyonları gerçekleştirilmiştir. Ayrıca test makinasının prototip imalatı için oldukça önemli teknik bulgular elde edilmiştir.

Design and Simulation of Gun Rebound and Rampancy Test Machine

In the design of firearms, the energy and force calculations of the mechanism parts and actuation systems are vital for the comfort and effectiveness of the gun. Knowing the forces formed on the gun limbs enables the design of long-lasting parts. Knowing the energy released after the explosion in automatic guns enables optimum calculation of the gas hole diameter and position. As a result of these calculations, more comfortable and high performance guns can be designed. In this study; the novel design and simulation of a rigid test machine is realized using a finite element method which is two degrees of freedom and can measure the rebound force and rampancy moment formed on gun firing and absorbs incoming forces. In addition, very important technical findings are obtained for the prototype manufacturing of the testing machine.

___

  • [1] Y.A. Çengel and M. A. Boles, Mühendislik Yaklaşımıyla Termodinamik. Yayıncı. Palme Yayıncılık, 1 Ağustos 2013 ; ISBN-10. 6053551627 ; ISBN-13. 978-6053551621.
  • [2] M. Ahmadian and J. C. Poynor, “An evaluation of magneto rheological dampers for controlling gun recoil Dynamics”, Shock and Vibration, vol. 8, pp. 147–155, 2001.
  • [3] M. Craig, “Testin machine”, U.S. Patent Office, Feb. 1, 1921.
  • [4] N. Benson, “Process and apparatus for catching machine gun bullets”, US Patent Office, Aug. 15, 1950.
  • [5] G. E. McPherren, “Machine gun testing device”, US Patent Office, May 29, 1951.
  • [6] H. J. Singh and N. M. Wereley “Optimal control of gun recoil using magnetorheological dampers”. In Smart Materials, Adaptive Structures and Intelligent Systems , Vol.45103, pp. 441-450, 2012.
  • [7] H. J. Singh and N. M. Wereley. “Optimal control of gun recoil in direct fire using magnetorheological absorbers”, Smart materials and Structures, 23(5), pp.55-70, 2014.
  • [8] Q. Ouyang, J. Zheng, Z. Li, M. Hu and J. Wang, “Controllability analysis and testing of a novel magnetorheological absorber for field gun recoil mitigation”, Smart Materials and Structures, 25(11), 115041, 2015.
  • [9] X. Y. Liu, D. Wu, J. Hou, “Design and analysis of a scheme for the naval gun test shell entering the bore”, Defence Technology, Volume 17, Issue 4, Pages 1374-1386, 2021.
  • [10] D. K. Noh, Y. K. Kang, J. D. Ji, J. S. Park, J. S. Jang, “Case of Developing Analysis Model for Recoil System for Automatic Gun”, Journal of the Korea Society for Simulation. Vol. 24, No. 4, pp. 35-41, 2015.
  • [11] S. R. Hong, N. M. Wereley, Y. T. Choi and S. B. Choi, “Analytical and experimental validation of a nondimensional bingham model for mixed mode magnetorheological dampers”. J. Sound Vib. Vol. 312, pp. 399–417, 2008.
  • [12] H. Hongsheng, W. Jiong, Q. Suxiang, L. Yancheng and J. Xuezheng, “Investigation on controllability of a magnetorheological gun recoil damper”, Int. Conf. on Information and Automation, pp 1044–1049, 2009.
  • [13] Z. C. Li and J. Wang, “A gun recoil system employing a magnetorheological fluid damper”, Smart Mater. Struct. Vol. 21,105003, 2012.
  • [14] M. Mao, W. Hu, Y. T. Choi, N. M. Wereley, A. L. Browne and J. Ulicny, “Experimental validation of a magnetorheological energy absorber design analysis”, J. Intell. Mater. Syst. Struct., Vol. 25, pp. 352–63, 2014.
Konya Journal of Engineering Sciences-Cover
  • Yayıncı: Konya Teknik Üniversitesi
Sayıdaki Diğer Makaleler

Yersel Lazer Tarayıcı Nokta Verileri ile İnsansız Hava Aracı Nokta Verilerinin Entegrasyonunda Doğruluk Değerlendirmesi

Lütfiye KARASAKA, Hasan Bilgehan MAKİNECİ, Kasım ERDAL

Rüzgar Türbinleri İçin ANFIS Tabanlı Gerçek Zamanlı Güç Tahmini

Göksel GÖKKUŞ

PERLİT GENLEŞTİRMEDE SICAKLIK DEĞİŞİMİNİN AGREGA KARAKTERİSTİĞİNE ETKİLERİ ÜZERİNE BİR İNCELEME-YENİ BİR YAKLAŞIM

Lütfullah GÜNDÜZ, Şevket Onur KALKAN

MİKROKRİSTALİN SELÜLOZ VE ELMA KABUĞU KATKILI POLİLAKTİK ASİT ESASLI FİLMLERİN ÖZELLİKLERİNİN İNCELENMESİ

Pınar TERZİOĞLU, Kemal Can TOHUMCU

KOMŞU İZOLE SAÇILMA SAYISININ ALGORİTMASI

Mehmet Aykut TOSUN, Ersin ASLAN, Emin BORANDAG

KÖPRÜ AYAK TİPİ VE VEREVLİĞİNİN SU YÜZÜ PROFİLLERİ ÜZERİNDEKİ ETKİSİNİN DENEYSEL VE SAYISAL OLARAK ARAŞTIRILMASI

Kutsi S. ERDURAN, Uğur ÜNAL, Ahmet Şakir DOKUZ, Mustafa Çağrı NAS

Frekans Alanı Öznitelik Çıkarımına Dayalı Makine Öğrenme Teknikleri ile Trapezius Yüzey EMG Sinyallerini Kullanarak Servikal Disk Fıtığı Hastalığının Tahmini

Burak YILMAZ, Güzin ÖZMEN, Hakan EKMEKCİ

MİKRO PİM TİPİ KANATÇIKLI VE MİKRO OYUKLU ISI ALICIDA DOYMUŞ KAYNAMALI AKIŞIN DENEYSEL İNCELENMESİ

Burak MARKAL, Beyzanur KUL

Tarihi İplikçi Camisinin DBYBHY 2007 ve TBDY 2018 Yönetmeliklerine Göre Değerlendirilmesi

Elifnur ŞAKALAK, Mahmud Sami DÖNDÜREN

BİYOKÜTLEDEN GÖZENEKLİ KARBONLU MALZEME ÜRETİMİ: BİYOKÜTLE TİPİ VE SICAKLIĞIN FİZİKOKİMYASAL ÖZELLİKLERE ETKİSİ

Aynur AŞMA, Elif YAMAN, Sinan TEMEL