PARÇACIK DARBESİ İLE TİTREŞİM SÖNÜMLEME ÜZERİNE BİR ÇALIŞMA

Parçacık darbesi ile sönümleme, ana yapı üzerindeki boşluk veya boşluklara çok sayıda küçük boyutlu parçacıklar yerleştirilerek sistemdeki titreşim enerjisinin azaltıldığı pasif bir sönümleme yöntemidir. Titreşimi azaltılacak sistem üzerinde oluşturulan hücreler içine yerleştirilen çok sayıdaki küçük taneli parçacıklar titreşim esnasında hareket ederler ve hücre içerisinde birbirlerine ve hücre duvarlarına çarparlar. Bu sayede ana sistemin titreşimini bir miktar sönümlerler. Bu çalışmada, yatay doğrultuda zeminden tahrikli tek serbestlik dereceli bir yapının titreşim seviyesinin düşürülmesinde parçacık darbesi ile sönümleyicinin performansı incelenmiştir. Ana yapı üzerine açılan hücreler içerisine çok sayıda küresel parçacıklar yerleştirilmiştir. Parçacıkların birbiri ve hücre duvarları ile olan dinamik etkileşimini modellemek için Ayrık Elemanlar Yöntemi kullanılmış ve parçacık sayısına bağlı olarak çok sayıda doğrusal olmayan denklem takımı elde edilmiştir. Bu denklemlerin sayısal olarak çözülmesiyle sistemin zamana bağlı olarak titreşim genlikleri ve her parçacığın hücre içerisindeki hareketi elde edilmiştir. Yapılan sayısal uygulamalarda parçacıkların ana sistemin titreşimlerini önemli ölçüde sönümlediği görülmüştür.

A Study On Particle Impact Damping

Particle impact damping is a passive damping method in which the vibration energy in the system is attenuated by placing multiple small size particles into the cavity on the main structure. A large number of small particles, placed into the cells formed on the system where vibration reduction desired, move during vibration and collide with each other and cell walls. Thus, they absorb the vibration of the main system to some extent. In this study, the performance of particle impact damper to decrease the vibration level of a single degree of freedom system excited from the ground in horizontal direction was investigated. A large number of spherical particles are placed into the cells. The Discrete Elements Method was used to model the dynamic interaction of particles with each other and cell walls, and depending on the number of particles a set of nonlinear equations was obtained. By the numerical solution of these equations, the vibration amplitudes of the system and the movement of each particle within the cell are obtained. In the numerical applications, it has been observed that the particles significantly attenuate the vibration of the main system.

___

  • Ahmad, N., Ranganath R., Ghosal A., 2016, “Assessment of particle damping device for large laminated structures under acoustic excitations”, Proceedings of the 14th ISAMPE National Conference on Composites (INCCOM-14), Hyderabad.
  • Ahmad, N., Ranganath R., Ghosal A., 2017, “Modeling and experimental study of a honeycomb beam filled with damping particles”, Journal of Sound and Vibration, Cilt 391, ss. 20–34.
  • Cundall, P. A., Strack, O. D. L., 1979, “A discrete numerical model for granular assemblies”, Geotechnique, Cilt 29, Sayı 1, ss. 47–65.
  • Duncan, M. R., Wassgren, C. R., Krousgrill, C. M., 2005, “The damping performance of a single particle impact damper”, Journal of Sound and Vibration, Cilt 286, Sayı (1–2), ss. 123–44.
  • Knight, B., Parsons, D., Smith, A., 2013, “Evaluating Attenuation of Vibration Response using Particle Impact Damping for a Range of Equipment Assemblies”, AIAA Aerospace Design and Structures Event; 8-11 Apr. 2013; Boston, MA; United States, 1–9.
  • Koch, S., Duvigneau, F., Orszulik, R., Gabbert, U., Woschke, E., 2017, “Partial filling of a honeycomb structure by granular materials for vibration and noise reduction”, Journal of Sound and Vibration, Cilt 393, ss. 30–40.
  • Lu, Z., Lu, X., Lu, W., Masri, S. F., 2012, “Experimental studies of the effects of buffered particle dampers attached to a multi-degree-of-freedom system under dynamic loads”, Journal of Sound and Vibration Cilt 331, Sayı 9, ss. 2007–22.
  • Lu, Z., Lu, X., Masri, S. F., 2010, “Studies of the performance of particle dampers under dynamic loads”, Journal of Sound and Vibration Cilt 329, Sayı 26, ss. 5415–33.
  • Mao, K., Yu Wang, M., Zhiwei, X., Chen, T., 2004, “Simulation and characterization of particle damping in transient vibrations”, Journal of Vibration and Acoustics, Transactions of the ASME, Cilt 126, Sayı 2, ss. 202–11.
  • Masri, S. F., 1970, “General Motion of Impact Dampers”, The Journal of the Acoustical Society of America, Cilt 47, Sayı 1B, ss. 229–37.
  • Masri, S. F., Gaughey, T. K., 1964, “On the stability of the impact damper”, Journal of Applied Mechanics, Transactions ASME, Cilt 33, Sayı 3, ss. 586–92.
  • Michon, G., Almajid, A., Aridon, G., 2013, “Soft hollow particle damping identification in honeycomb structures”, Journal of Sound and Vibration Cilt 332 Sayı, 3 ss. 536–44.
  • Moore, J. J., Palazzolo, A. B., Gadangi, R., Nale, T. A., Klusman, S. A., Brown, G. V., Kascak, A. F., 1995, “A forced response analysis and applicationof impact dampers to rotordynamic vibration suppression in a cryogenic environment”, Journal of Vibration and Acoustics, Transactions of the ASME Cilt 117, Sayı 3, ss. 300–310.
  • Panossian H., 2005, “Apparatus and method for aircraft cabin noise attenuation via non-obstructive particle damping”, 1(19).
  • Panossian, H., Ehrgott, R., 2007, “Non-Obstructive Particle Damping (NOPD) treatment optimization for composite honeycomb panels”, Collection of Technical Papers - AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Cilt 4, ss. 4209–18
  • Saeki, M., 2002, “Impact damping with granular materials in a horizontally vibrating system”, Journal of Sound and Vibration, Cilt 251, Sayı 1, ss. 153–61.
  • Saeki, M., 2005, “Analytical study of multi-particle damping”, Journal of Sound and Vibration, Cilt 281, Sayı (3–5), s.1133–44.
  • Tsuji, Y., Tanaka, T., Ishida, T., 1992, “Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe”, Powder Technology, Cilt 71, Sayı 3, ss.239–50.
  • Vinayaravi, R., Kumaresan, D., Jayaraj, K., Asraff, A. K., Muthukumar, R., 2013, “Experimental investigation and theoretical modelling of an impact damper”, Journal of Sound and Vibration Cilt 332, Sayı 5, ss. 1324–34.
  • Wang, B., Yang, M., 2000, “Damping of honeycomb sandwich beams”, Journal of Materials Processing Technology, Cilt 105, Sayı 1, ss. 67–72.
  • Wong, C. X., Daniel, M. C., Rongong, J. A., 2009, “Energy dissipation prediction of particle dampers”, Journal of Sound and Vibration, Cilt 319, Sayı (1–2), ss. 91–118.
  • Xu, Z., Yu Wang, M., Chen, T., 2004, “An experimental study of particle damping for beams and plates”, Journal of Vibration and Acoustics, Transactions of the ASME, Cilt 126, Sayı 1, ss. 141–48.
  • Xu, Z., Yu Wang M., Chen, T., 2005, “Particle damping for passive vibration suppression: Numerical modelling and experimental investigation”, Journal of Sound and Vibration, Cilt 279, Sayı (3–5), ss. 1097–1120.
  • Yao, B., Chen, Q., 2015, “Investigation on zero-gravity behavior of particle dampers”, JVC/Journal of Vibration and Control, Cilt 21, Sayı 1, ss. 124–33.