Belirsizlik ve Bozuculara Sahip Bir Servo Sistemin Konum Kontrolü İçin Gözlemci Tabanlı Kayan Kipli Kontrolcü Tasarımı

Servo sistemler, hassas konum kontrolü gerektiren birçok endüstriyel uygulamada yoğun olarak kullanılmaktadır. Ancak bu uygulamaların çoğunda karşılaşılan parametre belirsizlikleri, eşleşen ve eşleşmeyen bozucu etkenler, kontrolcü performansını olumsuz yönde etkilemektedir. Dolayısıyla endüstriyel kontrol uygulamalarında gürbüzlükte en az hassasiyet kadar önem taşımaktadır. Bu çalışmada, parametre belirsizlikleri ve bozucu girişe sahip bir döner servo sistemin hassas pozisyon kontrolü için Genişletilmiş Durum Gözlemcisine dayalı Kayan Kipli Kontrolcü (GDGKKK) tasarımı sunulmuştur. Önerilen kontrolcünün performansı, beş farklı belirsizlik ve bozucu giriş senaryosu için benzetim çalışmaları yapılarak test edilmiş ve etkinliğinin değerlendirilebilmesi için klasik Kayan Kipli Kontrol (SMC) ve Oransal Türevsel (PD) kontrol ile kıyaslanmıştır. MATLAB/Simulink yazılımında benzetim çalışmalarında Quanser SRV02 döner servo ünitesine ait matematiksel model kullanılmıştır. Benzetim sonuçları, PD kontrolün yük değişimlerine ve bozucu girişlere karşı oldukça duyarlı olduğunu, klasik SMC kontrolün ise yük değişimleri ve eşleşen bozuculara karşı dayanıklı olmakla birlikte eşleşmeyen bozuculara karşı duyarlı olduğunu göstermiştir. Diğer yandan sonuçlar, önerilen GDGKKK kontrolcünün hem yük değişimlerine hem de eşleşen ve eşleşmeyen bozuculara karşı son derece başarılı bir bozucu reddetme performansı sunduğunu açıkça göstermiştir.

OBSERVER BASED SLIDING MODE CONTROLLER DESIGN FOR POSITION CONTROL OF A SERVO SYSTEM HAVING UNCERTAINTIES AND DISTURBANCES

Servo systems are used extensively in many industrial applications that require precise position control. However, parameter uncertainties, matched and unmatched disturbances encountered in most of these applications adversely affect the controller performance. Therefore, in industrial control applications, robustness is at least as important as precision. In this study, an Extended State Observer-based Sliding Mode Controller (GDGKKK) design is presented for precise position control of a rotary servo system having parameter uncertainties and disturbance input. The performance of the proposed controller has been tested by performing simulation studies for five different uncertainty and disturbance input scenarios and compared with the traditional Sliding Mode Control (SMC) and Proportional Derivative (PD) control to evaluate its effectiveness. The mathematical model of the Quanser SRV02 rotary servo unit was used in the simulation studies in MATLAB/Simulink software. The simulation results show that the PD control is very sensitive to load changes and disturbances and while the traditional SMC control is insensitive to load changes and matched disturbances, it is sensitive to mismatched disturbances. On the other hand, the results clearly showed that the proposed GDGKKK controller offers extremely successful disturbance rejection performance against both load changes and matched and unmatched disturbances.

___

  • Baik, I. C., Kim, K. H., & Youn, M. J., 2000, “Robust nonlinear speed control of PM synchronous motor using boundary layer integral sliding mode control technique”, IEEE Transactions on Control Systems Technology, 8(1), 47-54.
  • Bao, G., Zhang, Q., Lu, J., Xun, Y., & Yang, Q., 2010, “Sliding-mode position control of robot joint based on self-adaptive parameters adjusting”, In 2010 IEEE International Conference on Robotics and Biomimetics (pp. 478-483). IEEE.
  • Bartolini, G., Ferrara, A., & Usai, E., 1998, “Chattering avoidance by second-order sliding mode control”, IEEE Transactions on automatic control, 43(2), 241-246.
  • Chang, Y., 2009, “Adaptive sliding mode control of multi-input nonlinear systems with perturbations to achieve asymptotical stability”, IEEE Transactions on automatic control, 54(12), 2863-2869.
  • Cheon, J. W., Choi, S. B., Song, H. J., & Ham, J. H., 2004, “Position control of an AC servo motor using sliding mode controller with disturbance estimator”, International journal of precision engineering and manufacturing, 5(4), 14-20.
  • Ha, Q. P., Nguyen, Q. H., Rye, D. C., & Durrant-Whyte, H. F., 2001, “Fuzzy sliding-mode controllers with applications”, IEEE Transactions on industrial electronics, 48(1), 38-46.
  • Hou, L., Wang, L., & Wang, H., 2017, “SMC for systems with matched and mismatched uncertainties and disturbances based on NDOB”, Acta Automatica Sinica, 43(7), 1257-1264.
  • Kachroo, P., & Tomizuka, M., 1996, “Chattering reduction and error convergence in the sliding-mode control of a class of nonlinear systems”, IEEE Transactions on automatic control, 41(7), 1063-1068.
  • Levant, A., 2003, “Higher-order sliding modes, differentiation and output-feedback control”, International journal of Control, 76(9-10), 924-941.
  • Li, H. Y., & Hu, Y. A., 2011, “Robust sliding-mode backstepping design for synchronization control of cross-strict feedback hyperchaotic systems with unmatched uncertainties”, Communications in Nonlinear Science and Numerical Simulation, 16(10), 3904-3913.
  • Liu, X., Wu, Y., Deng, Y., & Xiao, S., 2014, “A global sliding mode controller for missile electromechanical actuator servo system”, Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 228(7), 1095-1104.
  • Nguyen, D. G., Tran, D. T., & Ahn, K. K., 2021, “Disturbance Observer-Based Chattering-Attenuated Terminal Sliding Mode Control for Nonlinear Systems Subject to Matched and Mismatched Disturbances”, Applied Sciences, 11(17), 8158.
  • Rubagotti, M., Estrada, A., Castaños, F., Ferrara, A., & Fridman, L., 2011, “Integral sliding mode control for nonlinear systems with matched and unmatched perturbations”, IEEE Transactions on Automatic Control, 56(11), 2699-2704.
  • Shao, K., Zheng, J., Wang, H., Xu, F., Wang, X., & Liang, B., 2021, “Recursive sliding mode control with adaptive disturbance observer for a linear motor positioner”, Mechanical Systems and Signal Processing, 146, 107014.
  • Shi, S. L., Li, J. X., & Fang, Y. M., 2018, “Extended-state-observer-based chattering free sliding mode control for nonlinear systems with mismatched disturbance”, IEEE Access, 6, 22952-22957.
  • Tseng, M. L., & Chen, M. S., 2010, “Chattering reduction of sliding mode control by low‐pass filtering the control signal”, Asian Journal of control, 12(3), 392-398.
  • Wang, A., Jia, X., & Dong, S., 2013, “A new exponential reaching law of sliding mode control to improve performance of permanent magnet synchronous motor”, IEEE Transactions on Magnetics, 49(5), 2409-2412.
  • Wang, H., Li, S., Lan, Q., Zhao, Z., & Zhou, X., 2017, “Continuous terminal sliding mode control with extended state observer for PMSM speed regulation system”, Transactions of the Institute of Measurement and Control, 39(8), 1195-1204.
  • Wang, L., Chai, T., & Zhai, L., 2009, “Neural-network-based terminal sliding-mode control of robotic manipulators including actuator dynamics”, IEEE Transactions on Industrial Electronics, 56(9), 3296-3304.
  • Wang, S., Tao, L., Chen, Q., Na, J., & Ren, X., 2020, “USDE-based sliding mode control for servo mechanisms with unknown system dynamics”, IEEE/ASME Transactions on Mechatronics, 25(2), 1056-1066.
  • Zheng, J., Wang, H., Man, Z., Jin, J., & Fu, M., 2014, “Robust motion control of a linear motor positioner using fast nonsingular terminal sliding mode”, IEEE/ASME Transactions on Mechatronics, 20(4), 1743-1752.