Epilepsi Oluşum Mekanizmaları

Epilepsi yaygýn görülen ciddi nörolojik hastalýklardan biridir. Epileptik nöbetler aºýrý senkron ve devamlý boºalým yapan bir grup nörondan kaynaklanmaktadýr. Epileptik nöbet; beyindeki anormal aºýrý veya senkron nöronal aktiviteden dolayý oluºan geçici semptomlara verilen addýr. Epilepsi ise; epileptik nöbet oluºturmaya kalýcý bir yatkýnlýk ile karakterize olan beyin hastalýðýdýr. Epileptogenez; spontan nöbetlerin oluºmasýna neden olan moleküler ve hücresel deðiºikliklerinin kaskadýnýn tetiklenmesi ile sonuçlanan beyin hasarý sürecini ifade etmektedir. Nöbet oluºumuna yol açan yaygýn faktörler; hipoglisemi, hiponatremi, hipokalsemi gibi metabolik anormallikler, akut nörolojik hasara neden olan menenjit, inme, kafa travmasý gibi durumlar, nöbet eºiðini düºüren ilaçlar, alkol yoksunluðu ve çocuklarda yüksek ateºtir
Anahtar Kelimeler:

Epilepsi, nöbet, epileptogenez

___

  • 1. Zupec-Kania BA, Spellman E. An overview of the ketogenic diet for pediatric epilepsy. Nutr Clin Pract 2009;23(6):589ñ96.
  • 2. Altay EE, Bilir E. Demans ve epilepsi. Demans Dizisi 1999;4:116ñ128.
  • 3. Commission on Classification and Terminology of the International League Against Epilepsy. Proposal for revised classification of epilepsies and epileptic syndromes. Epilepsia 1989; 30(4): 389ñ399.
  • 4. Fisher RS, van Emde Boas W, Blume W,et al. Epileptic seizures and epilepsy: definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia 2005;46(4):470-2.
  • 5. Pitk‰nen A, Lukasiuk K. Molecular and cellular basis of epileptogenesis in symptomatic epilepsy. Epilepsy Behav 2009;14(1):16-25.
  • 6. Shneker BF, Fountain NB. Epilepsy. Dis Mon 2003;49(7):426-78.
  • 7. Baykan B, G¸rses C, Gˆkyiðit A.Nˆroloji. Ed: ÷ge EA, Epilepsi, 2.Bas˝m, ›stanbul: Nobel T˝p Kitabevleri, 2004:279-308.
  • 8. Stafstrom CE. Epilepsy: a review of selected clinical syndromes and advances in basic science. J Cereb Blood Flow Metab 2006;26(8):983-1004.
  • 9. Stafstrom CE. Severe epilepsy syndromes of early childhood: the link between genetics and pathophysiology with a focus on SCN1A mutations. J Child Neurol 2009;24(8 Suppl):15S-23S.
  • 10. S·nchez-Carpintero Abad R, SanmartÌ Vilaplana FX, Serratosa Fern·ndez JM. Genetic causes of epilepsy. Neurologist 2007;13(6 Suppl 1):S47-51.
  • 11. Kang JQ, Macdonald RL. Making sense of nonsense GABA(A) receptor mutations associated with genetic epilepsies. Trends Mol Med 2009;15(9):430-8.
  • 12. Dibbens LM, Harkin LA, Richards M, et al. The role of neuronal GABA(A) receptor subunit mutations in idiopathic generalized epilepsies. Neurosci Lett 2009;453(3):162-5.
  • 13. Wallace R. Mutations in GABA-receptor genes cause human epilepsy. Lancet Neurol 2002; 1(4):212.
  • 14. Teichgr‰ber LA, Lehmann TN, Meencke HJ, Weiss T, Nitsch R, Deisz RA. Impaired function of GABA(B) receptors in tissues from pharmacoresistant epilepsy patients. Epilepsia 2009;50(7):1697ñ1716.
  • 15. Alexander GM, Godwin DW. Metabotropic glutamate receptors as a strategic target for the treatment of epilepsy. Epilepsy Res 2006; 71(1):1ñ22.
  • 16. Moldrich RX, Chapman AG, De Sarro G, Meldrum BS. Glutamate metabotropic receptors as targets for drug therapy in epilepsy. Eur J Pharmacol 2003;476(1-2):3-16.
  • 17. RitzÈn A, Mathiesen JM, Thomsen C. Molecular pharmacology and therapeutic prospects of metabotropic glutamate receptor allosteric modulators. Basic Clin Pharmacol Toxicol 2005;97(4):202-13.
  • 18. Meldrum BS, Rogawski MA. Molecular targets for antiepileptic drug development. Neurotherapeutics 2007;4(1):18-61.
  • 19. Aroniadou-Anderjaska V, Fritsch B, Qashu F, Braga MF. Pathology and pathophysiology of the amygdala in epileptogenesis and epilepsy. Epilepsy Res 2008;78(2-3):102-16.
  • 20. Roshan-Milani, S, Ferrigan L, Khoshnood MJ, Davies CH, Cobb SR. Regulation of epileptiform activity in hippocampus by nicotinic acetylcholine receptor activation. Epilepsy Res 2003;56(1):51-65.
  • 21. Zimmerman G, Njunting M, Ivens S, et al. Acetylcholine-induced seizure-like activity and modified cholinergic gene expression in chronically epileptic rats. Eur J Neurosci 2008;27(4):965-75.
  • 22. Kokaia M, Ferencz I, Leanza G, et al. Immunolesioning of basal forebrain cholinergic neurons facilitates hippocampal kindling and perturbs neurotrophin messenger RNA regulation. Neuroscience 1996; 70(2):313ñ327.
  • 23. Ferencz I, Kokaia M, Keep M, et al. Effects of cholinergic denervation on seizure development and neurotrophin messenger RNA regulation in rapid hippocampal kindling. Neuroscience 1997; 80(2):389ñ399.
  • 24. Silveira DC, Holmes GL, Schachter SC, Geula C, Schomer DL. Increased susceptibility to generalized seizures after immunolesions of the basal forebrain cholinergic neurons in rats. Brain Res 2000; 878(1- 2):223ñ227.
  • 25. Ferencz I, Leanza G, Nanobashvili A, Kokaia Z, Kokaia M, Lindvall O. Septal cholinergic neurons suppress seizure development in hippocampal kindling in rats: Comparison with noradrenergic neurons. Neuroscience 2001; 102(4):819ñ832.
  • 26. Craig LA, Hong NS, Kopp J, McDonald RJ. Reduced cholinergic status in hippocampus produces spatial memory deficits when combined with kainic acid induced seizures. Hippocampus 2008;18(11):1112-21