SOME PARANORMED SEQUENCE SPACES DEFINED BY A MUSIELAK-ORLICZ FUNCTION OVER N-NORMED SPACES

SOME PARANORMED SEQUENCE SPACES DEFINED BY A MUSIELAK-ORLICZ FUNCTION OVER N-NORMED SPACES

In this paper we present new classes of sequence spaces using la- cunary sequences and a Musielak-Orlicz function over n-normed spaces. We examine some topological properties and prove some interesting inclusion re- lations between them.

___

  • [1] A.Esi, Some new paranormed sequence spaces de ned by Orlicz function, International Journal of Science, Environment and Technology, 1 (2012), 49-55.
  • [2] A.Esi, Strongly lacunary summable double sequence spaces in n-normed spaces de ned by ideal convergence and an Orlicz function, Advanced Modeling and Optimization, 14(2012), 79-86.
  • [3] A.Esi, Strongly almost summable sequence spaces in 2-normed spaces de ned by ideal convergence and an Orlicz function, Stud. Univ. Babes-Bolyai Math. 57 (2012), 75-82.
  • [4] A. R. Freedman, J. J. Sember and M. Raphael, Some Cesaro-type summability spaces, Proc. London Math. Soc., 37 (1978), 508-520. [5] S. Gahler, Linear 2-normietre Rume, Math. Nachr., 28 (1965), 1-43.
  • [6] H. Gunawan, On n-inner product, n-norms, and the Cauchy-Schwartz inequality, Sci. Math. Jap., 5 (2001), 47-54.
  • [7] H. Gunawan, The space of p-summable sequence and its natural n-norm, Bull. Aust. Math. Soc., 64 (2001), 137-147.
  • [8] H. Gunawan and M. Mashadi, On n-normed spaces, Int. J. Math. Math. Sci., 27 (2001), 631-639.
  • [9] G. G. Lorentz, A contribution to the theory of divergent sequences, Acta Mathematica, 80 (1948), 167-190.
  • [10] Lindenstrauss, J. and Tzafriri, L., On Orlicz sequence spaces, Israel J. Math., 10 (1971), 345-355.
  • [11] I. J. Maddox, Spaces of strongly summable sequences, Quart. J. Math., 18 (1967), 345-355.
  • [12] I. J. Maddox, A new type of convergence, Math. Proc. Camb. Phil. Soc., 83 (1978), 61-64.
  • [13] L. Maligranda, Orlicz spaces and interpolation, Seminars in Mathematics 5, Polish Academy of Science, 1989.
  • [14] A. Misiak, n-inner product spaces, Math. Nachr., 140 (1989), 299-319.
  • [15] M. Mursaleen and A. K. Noman, On some new sequence spaces of non absolute type related to the spaces lp and l1 I, Filomat, 25 (2011), 33-51.
  • [16] J. Musielak, Orlicz spaces and modular spaces, Lecture Notes in Mathematics, 1034 (1983).
  • [17] K. Raj, A. K. Sharma and S. K. Sharma, A Sequence space de ned by a Musielak-Orlicz function, Int. J. Pure Appl. Math., 67(2011), 475-484.
  • [18] K. Raj and S. K. Sharma, Some sequence spaces in 2-normed spaces de ned by Musielak- Orlicz functions, Acta Univ. Sapientiae Math., 3 (2011), 97-109.
  • [19] A. Wilansky, summability through Functional Analysis, North- Holland Math. stud. 85(1984).