SIMILAR CURVES WITH VARIABLE TRANSFORMATIONS

SIMILAR CURVES WITH VARIABLE TRANSFORMATIONS

In this paper, we define a new family of curves and call it a familyof similar curves with variable transformation or briefly SA-curves. Also weintroduce some characterizations of this family and we give some theorems.This definition introduces a new classification of a space curve. Also, we usethis definition to deduce the position vectors of plane curves, general helicesand slant helices, as examples of a similar curves with variable transformation

___

  • O’Neill, B., Semi Riemannian geometry with applications to relativity, Academic Press, Inc. New York, 1983.
  • Hacısaliho˘glu, H. H., Diferensiyel geometri, Cilt I-II, Ankara ¨Universitesi, Fen Fak¨ultesi Yayınları, 2000.
  • A. G¨org¨ul¨u and A. C. C¸ ¨oken, The Euler theorem for parallel pseudo-Euclidean hypersurfaces 1in pseudo-Euclideanspace En+1
  • , Journ. Inst. Math. and Comp. Sci. (Math. Series) Vol:6, No.2 (1993), 161-165.
  • A.T. Ali and M. Turgut, Position vector of a time-like slant helix in Minkowski 3-space, J. Math. Anal. Appl. 365 (2010) 559–569.
  • A.T. Ali, Position vectors of spacelike general helices in Minkowski 3-space, Nonl. Anal. Theory Meth. Appl. 73 (2010) 1118–1126.
  • A.T. Ali, Position vectors of general helices in Euclidean 3-space, Bull. Math. Anal. Appl. 3(2), (2010), 198–205.
  • A.T. Ali, Position vectors of slant helices in Euclidean 3-space, J. Egyptian Math. Soc. 20, (2012), 1–6.
  • M. Barros, General helices and a theorem of Lancret, Proc. Amer. Math. Soc. 125 (1997), 1503–1509.
  • C. Boyer, History of Mathematics, Wiley, New york, 1968.
  • C. Camci, K. Ilarslan, L. Kula and H.H. Hacisalihoglu, Harmonic curvatures and generalized helices in En, Chaos, Solitons and Fractals 40 (2009), 2590–2596.
  • L.P. Eisenhart, A Treatise on the Differential Geometry of Curves and Surfaces, Ginn and Co., 1909.
  • H. Gluck, Higher curvatures of curves in Euclidean space, Amer. Math. Monthly 73 (1996), 699–704.
  • H.H. Hacisalihoglu, Differential Geometry, Ankara University, Faculty of Science Press, 2000. [14] S. Izumiya and N. Takeuchi, New special curves and developable surfaces, Turk. J. Math. 28 (2004), 531–537.
  • W. Kuhnel, Differential Geometry: Curves - Surfaces - Manifolds, Wiesdaden: Braunchweig; 1999. [16] L. Kula and Y. Yayli, On slant helix and its spherical indicatrix, Appl. Math. Comp. 169 (2005), 600–607.
  • L. Kula, N. Ekmekci, Y. Yayli and K. Ilarslan, Characterizations of slant helices in Euclidean 3-space, Tur. J. Math. 33 (2009), 1–13.
  • M.M. Lipschutz, Schum,s Outline of Theory and Problems of Differential Geometry, McGraw-Hill Book Company, New York, 1969.
  • R.S. Milman and G.D. Parker, Elements of Differential Geometry, Prentice-Hall Inc., Engle- wood Cliffs, New Jersey, 1977.
  • J. Monterde, Curves with constant curvature ratios, Bulletin of Mexican Mathematic Society, 3a serie vol. 13 (2007), 177–186.
  • J. Monterde, Salkowski curves revisted: A family of curves with constant curvature and non-constant torsion, Comput. Aided Geomet. Design 26 (2009), 271–278.
  • M. Petrovic-Torgasev and E. Sucurovic, W-curves in Minkowski space-time, Novi Sad J. Math. 32(2) (2002), 55–65.
  • E. Salkowski, Zur transformation von raumkurven, Mathematische Annalen 66 (1909), 517– 557. [24] P.D. Scofield, Curves of constant precession, Amer. Math. Monthly 102 (1995), 531–537.
  • D.J. Struik, Lectures in Classical Differential Geometry, Addison,-Wesley, Reading, MA, 1961. [26] M. Turgut and S. Yilmaz, Contributions to classical differential geometry of the curves in E3, Scientia Magna 4 (2008), 5–9.
  • 1- Mathematics Department, Faculty of Science, Minia University, Minia, Egypt.
  • 2- Al-Azhar University, Faculty of Science, Mathematics Department, Nasr City, 11884, Cairo, Egypt.
  • 3- King Abdul Aziz University, Faculty of Science, Department of Mathematics, PO Box 80203, Jeddah, 21589, Saudi Arabia.
  • E-mail address: elsabbaghmostafa@yahoo.com and atali71@yahoo.com