ON WEIGHTED MONTOGOMERY IDENTITIES FOR RIEMANN-LIOUVILLE FRACTIONAL INTEGRALS
ON WEIGHTED MONTOGOMERY IDENTITIES FOR RIEMANN-LIOUVILLE FRACTIONAL INTEGRALS
In this paper, we extend the weighted Montogomery identitiesfor the Riemann-Liouville fractional integrals. We also use this Montogomeryidentities to establish some new Ostrowski type integral inequalities
___
- G. Anastassiou, M.R. Hooshmandasl, A. Ghasemi and F. Moftakharzadeh, Montgomery iden- tities for fractional integrals and related fractional inequalities, J. Inequal. in Pure and Appl. Math, 10(4), 2009, Art. 97, 6 pp. [2] S. Belarbi and Z. Dahmani, On some new fractional integral inequalities, J. Inequal. in Pure and Appl. Math, 10(3), 2009, Art. 97, 6 pp.
- P. Cerone and S.S. Dragomir, Trapezoidal type rules from an inequalities point of view, Handbook of Analytic-Computational Methods in Applied Mathematics, CRC Press N.Y. (2000).
- Z. Dahmani, L. Tabharit and S. Taf, Some fractional integral inequalities, Nonlinear Science Letters A, 2(1), 2010, p.155-160. [5] Z. Dahmani, L. Tabharit and S. Taf, New inequalities via Riemann-Liouville fractional inte- gration, J. Advance Research Sci. Comput., 2(1), 2010, p.40-45.
- J. Duoandikoetxea, A unified approach to several inequalities involving functions and deriva- tives, Czechoslovak Mathematical Journal, 51 (126) (2001), 363–376.
- R. Gorenflo, F. Mainardi, Fractionalcalculus: integral and differentiable equations of frac- tional order, Springer Verlag, Wien, 1997, p.223-276.
- D. S. Mitrinovic, J. E. Pecaric and A. M. Fink, Inequalities involving functions and their integrals and derivatives, Kluwer Academic Publishers, Dordrecht, 1991.
- S.S. Dragomir and N. S. Barnett, An Ostrowski type inequality for mappings whose sec- ond derivatives are bounded and applications, RGMIA Research Report Collection, V.U.T., 1(1999), 67-76.
- S.S. Dragomir, An Ostrowski type inequality for convex functions, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. 16 (2005), 12–25.
- Z. Liu, Some companions of an Ostrowski type inequality and application, J. Inequal. in Pure and Appl. Math, 10(2), 2009, Art. 52, 12 pp.
- S. G. Samko, A. A Kilbas, O. I. Marichev, Fractional Integrals and Derivatives Theory and Application, Gordan and Breach Science, New York, 1993.
- M. Z. Sarikaya, On the Ostrowski type integral inequality, Acta Math. Univ. Comenianae, Vol. LXXIX, 1(2010), pp. 129-134.
- M. Z. Sarikaya, On the Ostrowski type integral inequality for double integrals, Demonstratio Mathematica, accepted.
- M. Z. Sarikaya and H. Ogunmez, On the weighted Ostrowski type integral inequality for double integrals, The Arabian Journal for Science and Engineering (AJSE)-Mathematics, (2011) 36: 1153-1160
- M.Z. Sarikaya and H. Ogunmez, On new inequalities via Riemann-Liouville fractional inte- gration, arXiv:1005.1167v1, submitted.
- M.Z. Sarikaya, E. Set, H. Yaldiz and N., Basak, Hermite -Hadamard’s inequalities for frac- tional integrals and related fractional inequalities, Mathematical and Computer Modelling, DOI:10.1016/j.mcm.2011.12.048. [18] A. M. Ostrowski, ¨Uber die absolutabweichung einer differentiebaren funktion von ihrem in- tegralmitelwert, Comment. Math. Helv. 10(1938), 226-227.
- Department of Mathematics, Faculty of Science and Arts, D¨uzce University, D¨uzce, Turkey
- E-mail address: sarikayamz@gmail.com
- E-mail address: yaldizhatice@gmail.com