$L^p$ LOCAL UNCERTAINTY PRINCIPLE FOR THE DUNKL TRANSFORM

$L^p$ LOCAL UNCERTAINTY PRINCIPLE FOR THE DUNKL TRANSFORM

In this paper, we establish $L^p$ local uncertainty principle for the Dunkl transform on Rd; and we deduce $L^p$ version of the Heisenberg-Pauli- Weyl uncertainty principle for this transform. We use also the $L^p$ local uncertainty principle for the Dunkl transform and the techniques of Donoho-Stark, we obtain uncertainty principles of concentration type in the $L^p$ theory, when 1 < p < 2.

___

  • [1] M. Cowling and J.F. Price, Bandwidth versus time concentration: the Heisenberg-Pauli-Weyl inequality, SIAM J. Math. Anal. Vol:15 (1984), 151-165.
  • [2] D.L. Donoho and P.B. Stark, Uncertainty principles and signal recovery, SIAM J. Appl. Math. Vol:49, No.3 (1989), 906-931.
  • [3] C.F. Dunkl, Integral kernels with re ection group invariance, Canad. J. Math. Vol:43 (1991), 1213-1227.
  • [4] C.F. Dunkl, Hankel transforms associated to nite re ection groups, Contemp. Math. Vol:138 (1992), 123-138.
  • [5] W.G. Faris, Inequalities and uncertainty inequalities, Math. Phys. Vol:19 (1978), 461-466.
  • [6] I.I. Hirschman, A note on entropy, Amer. J. Math. Vol:79 (1957), 152-156.
  • [7] M.F.E.de Jeu, The Dunkl transform, Invent. Math. Vol:113 (1993), 147-162.
  • [8] J.F. Price, Inequalities and local uncertainty principles, J. Math. Phys. Vol:24 (1983), 1711- 1714.
  • [9] J.F. Price, Sharp local uncertainty principles, Studia Math. Vol:85 (1987), 37-45.
  • [10] M. Rosler, An uncertainty principle for the Dunkl transform, Bull. Austral. Math. Soc. Vol:59 (1999), 353-360.
  • [11] N. Shimeno, A note on the uncertainty principle for the Dunkl transform, J. Math. Sci. Univ. Tokyo Vol:8 (2001), 33-42.
  • [12] F. Soltani, Heisenberg-Pauli-Weyl uncertainty inequality for the Dunkl transform on Rd, Bull. Austral. Math. Soc. Vol:87 (2013), 316-325.
  • [13] F. Soltani, A general form of Heisenberg-Pauli-Weyl uncertainty inequality for the Dunkl transform, Int. Trans. Spec. Funct. Vol:24, No.5 (2013), 401-409.
  • [14] F. Soltani, Donoho-Stark uncertainty principle associated with a singular secondorder di erential operator, Int. J. Anal. Appl. Vol:4, No.1 (2014), 1-10.
  • [15] F. Soltani, Lp uncertainty principles on Sturm-Liouville hypergroups, Acta Math. Hungar. Vol:142, No.2 (2014), 433-443.
  • [16] F. Soltani, Lp local uncertainty inequality for the Sturm-Liouville transform, CUBO Math. J. Vol:16, No.1 (2014), 95-104.
  • [17] F. Soltani, An Lp Heisenberg-Pauli-Weyl uncertainty principle for the Dunkl transform, Konuralp J. Math. Vol:2, No.1 (2014), 1-6.
  • [18] F. Soltani, Lp Donoho-Stark uncertainty principles for the Dunkl transform on Rd, J. Phys. Math. Vol:5, No.1 (2014), 4 pages.
  • [19] E.M. Stein, Interpolation of linear operators, Trans. Amer. Math. Soc. Vol:83 (1956), 482-492.
  • [20] E.M. Stein and G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Univ. Press., Princeton, N.J, 1971.