Some New Inequalities of Hermite-Hadamard Type for Differentiable Godunova-Levin Functions via Fractional Integrals

In this paper, we present new inequalities of the Hermite -– Hadamard type related to fractional integrals for Godunova-- Levin type functions. These inequalities are obtained with the help the of definitions of the Godunova-–Levin functions, the Holder and Power mean type inequalities.

___

  • [1] B. Martos, The Power of Nonlinear Programming Methods (In Hungarian). MTA Kozgazdas agtudom anyi Int ezet enek Kozlem enyei, No. 20, Budapest, Hungary, 1966.
  • [2] M. Avriel, r–Convex Functions, Mathematical Programming, 2 (1972), 309-323.
  • [3] S. S. Dragomir, C.E.M. Pearse, Selected Topics on Hermite–Hadamard Inequalities and Applications, RGMIA Monographs, Victoria University, 2000, [ONLINE. http://rgmia.org /papers/monographs/Master.pdf]
  • [4] M. Z. Sarıkaya, A. Saglam and H. Yıldırım, On some Hadamard-type inequalities for h?convex functions, J. Math. Inequal. 2 (2008), 335–341.
  • [5] L. Chun and F. Qi, Integral inequalities of Hermite–Hadamard type for functions whose third derivatives are convex. Journal of Inequalities and Applications. 2013:451.(2013)
  • [6] S.. Wu, B. Sroysang, J.-S. Xie and Y.-M. Chu, Parametrized inequality of Hermite–Hadamard type for functions whose third derivative absolute values are quasi-convex, Wu et al. SpringerPlus. 4:831 (2015) Page 9 of 9.
  • [7] I. Iscan, Hermite-Hadamard type inequalities for harmonically (alpha;m)convex functions, J. Hacettepe of Mathematics and Statistics 45 (2016) 2, 381–390. [8] J., Materano, N., Merentes and M., Valera–Lopez, On Inequalities Of Hermite–Hadamard Type for Stochastic Processes Whose Third Derivative Absolute Values Are Quasi–Convex, Tamkang Journal Of Mathematics. 48 (2017) 2, 203–208.
  • [9] B. Bayraktar and M. Gurbuz, On some integral inequalities for (s;m)?convex functions, TWMS J. App. Eng. Math., 10(2) (2020), 288–295.
  • [10] M. A. Noor, K. I. Noor and F. Safdar, New inequalities for generalized Log h?convex functions, J. Appl. Math.& Informatics 36 (2018), 3–4,245– 256
  • [11] E. Set, M.E. O¨ zdemir, N. Korkut, On New Fractional Hermite–Hadamard Type Inequalities for (nal pha;m)-Convex Function, Konuralp Journal of Mathematics, 7(1) (2019), 62–72
  • [12] B. Bayraktar and V. Kudaev, Some new integral inequalities for (s;m)?convex and (a;m)-convex functions, Bulletin of the Karganda University- Mathematics, 94(2) (2019), 15–25.
  • [13] J. Hadamard, E´tude sur les proprie´te´s des fonctions entie`res en particulier d’une fonction conside´re´e par Riemann. J. Math. Pures Appl. 58 (1893), 171–215.
  • [14] E. K. Godunova and V. I. Levin: Inequalities for functions of a broad class that contains convex, monotone and some other forms of functions. (Russian) Numerical mathematics and mathematical physics (Russian), 138-142, 166, Moskov. Gos. Ped. Inst., Moscow, 1985.
  • [15] S. S. Dragomir, J. Peˇcari´c and L. Persson, Some Inequalities of Hadamard Type. Soochow J. Math. 21(3) (1995), 335–341.
  • [16] A. O. Akdemir, M. E. O¨ zdemir, S. Varosanec, On some inequalities for h–concave functions, Mathematical and Computer Modelling 55 (2012) 746–753.
  • [17] M. E. O¨ zdemir, M. Tunc , and H. Kavurmaci, Two New Different Kinds of Convex Dominated Functions and Inequalties Via Hermite–Hadamard Type, arXiv:1202.2055v1[math.CA] 9 Feb 2012
  • [18] M. D. Noor, K.A. Noor, M. U. Awan, S.Khan, Hermite–Hadamard Inequalities For s–Godunova–Levin Preinvex Functions, J. Adv. Math. Stud. 7(2) (2014) 12–19.
  • [19] M. A. Noor, K. I. Noor, M. U. Awan and S. Khan, Fractional Hermite–Hadamard Inequalities for some New Classes of Godunova–Levin Functions, Appl. Math. Inf. Sci.8(6) (2014), 2865–2872.
  • [20] M. E. Ozdemir, Some inequalities for the s-Godunova–Levin type functions, Math Sci 9 (2015) 27–32.
  • [21] M. Li, J. Wang, W. Wei, Some Fractional Hermite–Hadamard Inequalities for Convex and Godunova–Levin Functions, FACTA UNIVERSITATIS (NIˆ S) Ser. Math. Inform. 30(2) (2015), 195–208.
  • [22] M. U. Awan, M. A. Noor, M. V. Mihai, K. I. Noor, Fractional Hermite–Hadamard Inequalities for Differentiable s–Godunova–Levin Functions, Filomat, 30(12)(2016), 3235–3241.
  • [23] S. Miller and B. Ross, (1993). An introduction to the Fractional Calculus and Fractional Differential Equations. USA: John Wiley & Sons, p.2.
  • [24] B. Bayraktar, Some Integral Inequalities Of Hermite–Hadamard Type For Differentiable (s;m)–Convex Functions Via Fractional Integrals, TWMS J. App. Eng. Math. Accepted, 2019.