20-25 Yaş Arası Sağlıklı Gençlerde Gri ve Beyaz Cevher Hacimlerinin İncelenmesi: Planimetrik Çalışma

Amaç: İnsan beyninde cinsiyete ilişkin varyasyonlar birçok araştırıcı tarafından incelenmiştir. Bu çalışmaların çoğunda erkek beyin hacminin bayanlardan daha büyük olduğu bildirilmektedir. Bu çalışmanın amacı MR görüntüleri üzerinde beyaz ve gri cevher ölçümleri planimterik yöntem ile değerlendirmektir. Gereç ve Yöntemler: Bu çalışmada beyaz ve gri cevher hacimleri 20-25 yaş arası sağlıklı gençlerde incelenmiştir. T2 ağırlıklı MR görüntüleri 12 kişi üzerinde elde edilmiş, kadın ve erkeklerde beyaz (BC) ve gri cevher (GC) oranını belirlemek için planimetrik ölçüm yapılmıştır. Total beyin hacmi (TBH), beyaz ve gri cevher hacimleri yarı otomatik yazılımla bilgisayar üzerinden yapılmıştır. Total beyin hacmi, beyaz ve gri cevher hacim ölçüm sonuçları cinsiyetler arasında bağımsız t testi ile karşılaştırılmıştır. Tahmin edilen hacimlerin istatistiksel analizi sağ ve sol taraf için unpaired t testi ile yapılmıştır. Bulgular: Cinsiyet ve taraflar (sağ ve sol) arasında istatistiksel olarak anlamlı fark olmadığı bulundu. Ancak beyaz cevherler açısından α = 0.1 alındığında fark olduğu ve kadınlara göre erkeklerde beyaz cevherin hacminin daha büyük olduğu istatistiksel olarak kanıtlandı. P-değerinin 0.085 olmasından dolayı cinsiyetlere göre sol beyaz cevherde fark olmadığını göstermektedir. Sonuç: Gri ve beyaz cevherin oranları beyin atrofisini anlamada bize yardımcı olabilir. Aynı zamanda beyaz ve gri cevherin hacim hesabı için bu metot güvenilir ve geçerlidir

20-25 Yaş Arası Sağlıklı Gençlerde Gri ve Beyaz Cevher Hacimlerinin İncelenmesi: Planimetrik Çalışma

Keywords:

-,

___

  • Ge Y, Grossman RI, Babb JS, Rabin ML, Mannon LJ, Kolson DL.Age-Related Total Gray Matter and White Matter Changes in Normal Adult Brain. Part I: Volumetric MR Imaging Analysis. AJNR Am J Neuroradiol, 2003; 24: 1492-3.
  • Ho NC, Andreasen P, Nopoulos S, Arndt V, Magnotta MF. Progressive structural brain abnormalities and their relationship to clinical outcome: a longitudinal magnetic resonance imaging study early in schizophrenia. Arch. Gen. Psychiatry, 2003; 60: 585–594.
  • Murphy C, Jernigan TL, Fennema-Notestine C. Left hippocampal volume loss in Alzheimer's disease is reflected in performance on odor identification: a structural MRI study, J. Int. Neuropsychol. Soc. 2003; 9: 459-471.
  • Schnack HG, Hulshoff Pol HE, Baare WF, Staal WG, Viergever MA, Kahn RS. Automated Separation of Gray and White Matter from MR Images of the Human Brain. 2001; 13: 230-7.
  • Prastawa M, Gilmore JH, Lin W, Gerig G. Automatic segmentation of MR images of the developing newborn brain. Med Image Anal., 2005; 9: 457-66.
  • Heinonen T, Dastidar P, Kauppinen P, Malmivuo J, Eskola H. Semi-automatic tool for segmentation and volumetric analysis of medical images. Med Biol Eng Comput, 1998; 36: 291-6.
  • Gadeberg P, Gundersen HJ, Taagehİj F, Jakobsen J. MRI volume measurements of hypointense objects. A phantom study using stereological methods. J Neurosci Methods, 2002; 114:149–157
  • Doherty CP, Fitzsimons M, Holohan T, Mohamed HB, Farrell M, Meredith GE, Staunton H. Accuracy and validity of stereology as a quantitative method for assessment of human temporal lobe volumes acquired by magnetic resonance imaging. Magn Reson Imaging 2000; 18: 1017–1025.
  • Byrum CE, MacFall JR, Charles HC, Chitilla VR, Boyko OB, Upchurch L, Smith JS, Rajagopalan P, Passe T, Kim D, Xanthakos S, Ranga K, Krishnan R. Accuracy and reproducibility of brain and tissue volumes using a magnetic resonance segmentation method. Psychiatry Res, 1996; 67: 215–234
  • Garcia-Finana M, Cruz-Orive LM, Mackay CE, Pakkenberg B, Roberts N. Comparison of MR imaging against physical sectioning to estimate the volume of human cerebral compartments. NeuroImage, 2003; 18: 505–516
  • Pakkenberg H and Voigt J. Brain weight of the Danes. Acta Anat, 1964; 56: 297–307.
  • Miller AKH, Alston RL and Corsellis JAN. Variation with age in the volumes of grey and white matter in the cerebral hemispheres of man: measurements with an image analyzer. Neuropathol Appl Neurobiol, 1980; 6: 119–132.
  • Mayhew TM and Olsen D. Magnetic resonance imaging and model free estimates of brain volume. J Anat, 1991; 178: 133–144.
  • Mazonakis M, Damilakis J, Maris T, Prassopoulos P and Gourtsoyiannis N. Comparison of two volumetric techniques for estimating liver volume using magnetic resonance imaging. J Magn Reson Imaging, 2002; 15: 557–563.
  • Sahin B, Alper T, Kökçü A, Malatyalioglu E, Kosif R. Estimation of the amniotic fluid volume using the Cavalieri method on ultrasound images. Int J Gynecol Obst, 2003; 82: 25–30.
  • Acer N, Sahin B, Usanmaz M, Tatolu H, Irmak Z. Comparison of point counting and planimetry methods for the assessment of cerebellar volume in human using magnetic resonance imaging: A stereological study. Surg Radiol Anat, 2008; 30: 335– 339.
  • Acer N, Sahin B, Ucar T, Usanmaz M. Unbiased estimation of the eyeball volume using the Cavalieri principle on computed tomography images. Journal of Craniofacial Surgery (In pres).
  • McNulty V, Cruz-Orive LM, Roberts N, Holmes CJ, Gual-Arnau X. Estimation of brain compartment volume from MR Cavalieri slices. J Comput Assist Tomogr, 2000; 24: 466–77.
  • Good CD, Johnsrude IS, Ashburner J, Henson RN, Friston KJ, Frackowiak RS. A voxel-based morphometric study of ageing in 465 normal adult human brains. NeuroImage, 2001; 14: 21–36.
  • Nopoulos P, Flaum M, O'Leary D, Andreasen NC. Sexual dimorphism in the human brain: evaluation of tissue volume, tissue composition and surface anatomy using magnetic resonance imaging, 2000; 28;98: 1-13.
  • Cotter D, Miszkiel K, Al-Sarraj S, Wilkinson ID, Paley M, Harrison MJ, et al. The assessment of postmortem brain volume; a comparison of stereological and planimetric methodologies. 32. Inuwa IM. First-order stereology in diabetes and Neuroradiology, 1999;41:493-6.
  • Ronan L, Doherty CP, Delanty N, Thornton J, Fitzsimons M. Quantitative MRI: a reliable protocol for measurement of cerebral gyrification using stereology. Magn Reson Imaging, 2006; 24: 265-72.
  • Gur RC, Turetsky BI, Matsui M, Yan M, Bilker W, Hughett P, Gur RE. Sex differences in brain gray and white matter in healthy young adults: correlations with cognitive performance. J Neurosci, 1999; 15;19: 4065-72.
  • Walhovd KB, Fjell AM, Reinvang I, Lundervold A, Dale AM, Eilertsen DE, Quinn BT, Salat D, Makris N, Fischl B. Effects of age on volumes of cortex, white matter and subcortical structures. Neurobiol Aging, 2005; 26: 1261-70.
  • Allen, JS, Damasio H, Grabowski ThJ, Bruss J, Zhang W, Sexual dimorphism and asymmetries in the gray– white composition of the human cerebrum. NeuroImage, 2003; 18: 880–894.
  • Ekinci N, Acer N, Akkaya A, Sankur S, Kabadayi T, Sahin B. Volumetric evaluation of the relations among the cerebrum, cerebellum and brain stem in young subjects: a combination of stereology and magnetic resonance imaging. Surg Radiol Anat, 2008; 30: 489-94.
  • Filipek PA, Richelme C, Kennedy DN, Caviness JrVS. The young adult human brain: an MRI-based morphometric analysis. Cereb Cortex, 1994; 4: 344– 60.
  • Peters M, Ja¨ncke L, Staiger JF, Huang Y, Steinmetz H. Unsolved problems in comparing brain sizes in Homo sapiens. Brain Cogn, 1998; 37: 254– 285.
  • Blatter DD, Bigler ER, Gale SD, Johnson SC, Anderson CV, Burnett BM, et al. Quantitative volumetric analysis of brain MR: normative database spanning 5 decades of life. Am J Neuroradiol, 1995;16: 241– 251.
  • Schlaepfer TE, Harris GJ, Tien AY, Peng L, Lee S, Pearlson GD. Structural differences in the cerebral cortex of healthy female and male subjects: a magnetic resonance imaging study. Psychiatr Res Neuroim, 1995; 61: 129–135.
  • Kruggel F. MRI-based volumetry of head
  • compartments: Normative values of healthy adults. NeuroImage, 2006; 30: 1–9 endocrine research-number and volume estimation of objects. Int. J Diabetes & Metabolism, 2005; 13: 10- 18.
  • Regeur L, Pakkenberg B. Optimizing sample design for volume measurement of components of human brain using a stereological method. J Microsc 1989; 155: 113–121.
  • Sahin B, Acer N, Sonmez OF, et al. Comparison of four methods for the estimation of intracranial volume: a gold standard study. Clinical Anatomy 2007; 20:766-773.
  • Acer N, Sahin B, Bas O, Ertekin T, Usanmaz M Comparison of three methods for the estimation of to- tal intracranial volume: stereologic, planimetric, and anthropometric approaches. Ann Plast Surg 2007; 58: 48-53.
  • Sahin B, Ergur H. Assessment of the optimum section thickness for the estimation of liver volume using magnetic resonance images: a stereological gold standard study. Eur J Radiol 2006; 57: 96 –101.
  • Gong QY, Tan LT, Romaniuk CS, Jones B, Brunt JN, Roberts N. Determination of tumour regression rates during radiotherapy for cervical carcinoma by serial MRI: comparison of two measurement techniques and examination of intraobserver and interobserver variability. Br J Radiol, 1999; 72:62–72.
  • McEvoy FJ. An application of image processing techniques in computed tomography image analysis. Vet Radiol Ultrasound, 2007; 48: 528-534.
  • Odacı E, Bahadır A,Yıldırım Ş, Şahin B, Canan S, Baş O, et al. Cavalieri prensibi kullanılarak Bilgisa- yarlı tomografi ve Manyetik Rezonans görüntüleri üzerinde hacim hesaplanması ve klinik kullanımı. Türkiye Klinikleri J Med Sci, 2005; 25: 421-428.