Sekonder Progresif Multipl Sklerozun Tedavisinde Olası Biyomedikal Çözüm Önerileri

Multipl Skleroz (MS), vücudun bağışıklık sistemi hücreleri tarafından beyindeki sinir hücrelerinin dış kısmında bulunan miyelin kılıfların zarar görmesi sonucu lezyon veya plak oluşmasına bağlı nörolojik bir hastalıktır. Bu makalenin amacı Sekonder Progresif MS (SPMS) için tıp ve biyomedikal mühendisliği alanında çözüm önerileri üreterek yapılan çalışmaların anlatılmasıdır. Hastalığın tıp alanında çeşitli tedavi yöntemleri vardır. MS tedavisi kişiye özel olarak yapılmaktadır. Tıp alanında yapılan en temel tedavi yöntemi ilaç ile tedavidir. Son yapılan çalışmalar sonucunda nanoparçacıkların polimerik yapısının içerisine konulan miyelin antijenleri sayesinde bağışıklık sistemi hücrelerinin miyelinli hücrelere saldırması engellenerek hastalığın yavaşlatılması sağlanmıştır. Zarar gören miyelin kılıfların onarımı ise kolesterolün düşürülmesinde kullanılan bir molekül sayesinde yapılmıştır. MS tam olarak nedeni bilinmeyen otoimmün ve nörolojik bir hastalıktır. Bu makale çalışmasında ise yapılmış olan deneysel çalışmalara göre üretilen tüm çözüm önerilerinin derlenmesi amaçlanmıştır.

___

  • [1] Coles A., Compston A., 2008. Multiple sclerosis, [abstract]. The Lancet, 372(9648), 1502-1517.
  • [2] Ghasemi N., Nikzad E., Razavi S., 2017. Multiple Sclerosis: Pathogenesis, Symptoms, Diagnoses and Cell-Based Therapy, [abstract]. Cell Journal, 19(1), 1-10.
  • [3] Khare M., Singh A.V., Zamboni P., 2014. Prospect of Brain-Machine Interface in Motor Disabilities: The Future Support for Multiple Sclerosis Patient to Improve Quality of life. Annals of Medical and Health Sciences Research, 4(3), 305-312.
  • [4] Goodin D.S., Hauser S.L., 2008. Multiple Sclerosis and Other Demyelinating Diseases. Harrison's Principles of Internal Medicine. 17th ed. McGraw-Hill Medical. New York, USA, 2611-2621.
  • [5] Archelos J.J., Hartung H.P., Hemmer B., 2002. New concepts in the immunopathogenesis of multiple sclerosis. Nature Reviews Neuroscience, 3(4), 291- 301.
  • [6] Carrieri P.B., Delfino M., Gattoni A., Montella S., Petracca M., Sepe C., 2008. Multiple sclerosis and systemic sclerosis: efficacy of interferon beta on skin lesions. Annals of the Rheumatic Diseases, 67(8), 1192-1193.
  • [7] Krupp L.B., 2003. Fatigue in Multiple Sclerosis: Definition, Pathophysiology and Treatment. CNS Drugs, 17(4), 225-234.
  • [8] Ascherio A., Munger K.L., 2007. Environmental risk factors for multiple sclerosis, Part I: the role of infection. Annals of Neurology, 61(4), 288-299.
  • [9] Mowry E.M., 2011. Natural history of multiple sclerosis: early prognostic factors. Neurologic Clinics, 29(2), 279-292.
  • [10] Confavreux C., Vukusic S., 2007. Natural history of multiple sclerosis: risk factors and prognostic indicators. Current Opinion in Neurology, 20(3), 269-274.
  • [11] Lublin F.D., 2005. Clinical features and diagnosis of multiple sclerosis. Neurologic Clinics, 23(1), 1-15.
  • [12] Garriga J.S., Jordana A.V., Tintore M., 2019. Treatment of multiple sclerosis: success from bench to bedside, [abstract]. Nature Reviews Neurology, 15(1), 53-58.
  • [13] Akpolat T., Arık N., Karaaslan Y., Turgan Ç., 1991. Plazmaferez ve renal hastalıklarda kullanımı. Türk İlaç ve Tedavi Dergisi, 4, 557-561.
  • [14] Hakim R.M., Siami G.A., 1994. Plasmapheresis. Handbook of Dialysis. Daugirdas JT, Ing TS (eds). Little, Brown and Company, Boston, USA, 218-241.
  • [15] Al-Kutoubi A., Barada W., El-Hajj T., Hourani R., Salti H., Yamout B., … , Bazarbachi A., 2010. Bone marrow mesenchymal stem cell transplantation in patients with multiple sclerosis: a pilot study, [abstract]. Journal of Neuroimmunology, 227(1-2), 185-9.
  • [16] Getts D.R., Harp C.T., Hunter Z., McCarthy D.P., Miller S.D., Shea L.D., Yap W.T., 2014. A Biodegradable Nanoparticle Platform for the Induction of Antigen-Specific Immune Tolerance for Treatment of Autoimmune Disease. ACS Nano, 8(3), 2148-2160.
  • [17] Banerji T., Calkins E., Chaudhary P., Hartley M.D., Kirkemo L.L., Tagge I.J., … ,Scanlan T.S., 2019. Myelin repair stimulated by CNS-selective thyroid hormone action. JCI Insight, 4(8), e126329.
  • [18] Cekanaviciute E., Debelius J.W., Nelson C.A., Runia T.F., Singh S., Yoo B.B., … ,Baranzini S.E., 2017. Gut bacteria from multiple sclerosis patients modulate human T cells and exacerbate symptoms in mouse models. Proceedings of the National Academy of Sciences of the United States of America, 114(40), 10713-10718.
  • [19] Eccles J.D., Keyes T.J., Louveau A., Peske J.D., Rouhani S.J., Smirnov I., … ,Kipnis J., 2015. Structural and functional features of central nervous system lymphatic vessels, Nature, 523, 337-41.
  • [20] Brück W., Lassmann H., Lucchinetti C.F., 2007. The immunopathology of multiple sclerosis: an overview, [abstract]. Brain Pathology, 17(2), 210-8.
  • [21] Lässer C., Mohammadi M.R., Pone E.J., Riazifar M., Segaliny A.I., Yeri A., … ,Zhao W., 2019. Stem Cell-Derived Exosomes as Nanotherapeutics for Autoimmune and Neurodegenerative Disorders. ACS Nano, 13(6), 6670-6688.
  • [22] Vidal J.J., 1973. Toward direct brain-computer communication. Annual Review of Biophysics and Bioengineering, 2, 157-80.
  • [23] Birbaumer N., McFarland D.J., Pfurtscheller G., Vaughan T.M., Wolpaw J.R., 2002. Brain-computer interfaces for communication and control. Clinical Neurophysiology, 113(6), 767-91.
  • [24] Allison B.Z., Bauernfeind G., Brunner C., Pfurtscheller G., Scherer R., Solis-Escalante T., …,Birbaumer N., 2010. The hybrid BCI. Frontiers in Neuroscience, 4, 3.
  • [25] Lin L.N., Liu F.F., Liu Q., Sha J.X., Song L., 2010. Recent advances in nanotechnology based drug delivery to the brain. Cytotechnology, 62(5), 377-380.
  • [26] Kanwar J.R., Mohan R.R., Punj V., Sriramoju B., Sun X., Zhou S.F., … ,Kanwar R.K., 2012. Nanoparticles in the treatment and diagnosis of neurological disorders: untamed dragon with fire power to heal, [abstract]. Nanomedicine, 8(4), 399-414.
  • [27] Gailite L., Gianfelice A., Lenardi C., Milani P., Singh A.V., 2009. A simple lift-off-based patterning method for micro-and nanostructuring of functional substrates for cell culture. Journal of Micromechanics and Microengineering, 19(11), 115028.
  • [28] Forti S., Gailite L., Lenardi C., Matteoli M., Milani P., Singh A.V., Vyas V., 2011. Rapid prototyping of nano- and micro-patterned substrates for the control of cell neuritogenesis by topographic and chemical cues. Materials Science and Engineering:C, 31(5), 892-899.
  • [29] Calafoire R., Chang T.M.S., Gascón A.R., Hernández R.M., Orive G., Vos P.D., … , Pedraz J.L., 2003. Cell encapsulation: promise and progress. Nature Medicine, 9(1), 104-7.
  • [30] Fernandes R., Gracias D.H., 2012. Self-folding polymeric containers for encapsulation and delivery of drugs. Advanced Drug Delivery Reviews, 64(14), 1579-1589.
  • [31] Ausländer S., Fussenegger M., Wieland M., 2012. Smart medication through combination of synthetic biology and cell microencapsulation. Metabolic Engineering, 14(3), 252-60.
  • [32] Falamarzian A., Garg S.M., Lavasanifar A., Xiong X.B., 2011. Engineering of amphiphilic block copolymers for polymeric micellar drug and gene delivery. Journal of Controlled Release, 155(2), 248-61.
  • [33] Anitua E., Emerich D. F., Orive G., Pedraz J.L., 2009. Biomaterials for promoting brain protection, repair and regeneration. Nature Reviews Neuroscience, 10(9), 682-92.
  • [34] Desimone J.M., Petros R.A., 2010. Strategies in the design of nanoparticles for therapeutic applications. Nature Reviews Drug Discovery, 9(8), 615-27.
  • [35] Gemmati D., Milani P., Singh A.V., Subhashree L., Zamboni P., 2010. Review:Interplay of iron metallobiology, metalloproteinases, and FXIII, and role of their gene variants in venous leg ulcer. The International Journal of Lower Extremity Wounds, 9(4), 166-79.
  • [36] Gutowski N.J., Holley J.E., Newcombe J., Whatmore J.L., 2010. Increased blood vessel density and endothelial cell proliferation in multiple sclerosis cerebral white matter. Neuroscience Letters, 470(1), 65-70.
  • [37] Dijkstra C.D., Horssen J.V., Vries H.E.D., 2007. The extracellular matrix in multiple sclerosis pathology. Journal of Neurochemistry, 103(4), 1293-1301.
  • [38] Bicknell R., Neri D., 2005. Tumour vascular targeting. Nature Reviews Cancer, 5(6), 436-446.
  • [39] Lin K.Y., Maltzahn G.V., Mesters R., Park J.H., Schwöppe C., Singh N., … ,Bhatia S.N., 2011. Nanoparticles that communicate in vivo to amplify tumour targeting. Nature Materials, 10(7), 545-552.
  • [40] Gade W.N., Khare M., Singh A.V., Zamboni P., 2012. Theranostic Implications of Nanotechnology in Multiple Sclerosis: A Future Perspective. Autoimmune Diseases, 2012, 12.
  • [41] Huang Y.M., Link H., 2006. Oligoclonal bands in multiple sclerosis cerebrospinal fluid: an update on methodology and clinical usefulness Journal of Neuroimmunology, 180(1-2), 17-28.
  • [42] Stoeckli E.T., 2012. What does the developing brain tell us about neural diseases? European Journal of Neuroscience, 35(12), 1811-1817.
  • [43] Hassan S., Singh A.V., 2014. Biophysicochemical perspective of nanoparticle compatibility: a critically ignored parameter in nanomedicine. Journal of Nanoscience and Nanotechnology, 14(1), 402-414.
  • [44] Cortelli D., Dellasega D., Podestà A., Salve T.S., Singh A.V., Vyas V., … ,Gade W.N., 2012. Biofilm formation on nanostructured titanium oxide surfaces and a micro/nanofabrication-based preventive strategy using colloidal lithography. Biofabrication, 4(2), 2484-2490.
  • [45] Kumar B., Ojha S., 2018. A review on nanotechnology based innovations in diagnosis and treatment of multiple sclerosis. Journal of Cellular Immunotherapy, 4(2), 56-64.
  • [46] Certo A., McKay C.A., Pace F., Raymond M., Singh A.V., Zuidema J.M., … ,Wan L.Q., 2015. Astrocytes increase ATP exocytosis mediated calcium signaling in response to microgroove structures. Scientific Reports, 5(1), 7847.
  • [47] Han L., Kong D.K., Ma C., Murikinati S., Yuan P., Zheng M.Q., … ,Zhou J., 2016. Increased Nanoparticle Delivery to Brain Tumors by Autocatalytic Priming for Improved Treatment and Imaging. ACS Nano, 10(4), 4209-4218.
  • [48] Choonara Y.E., Kumar P., Modi G., Pillay V., 2016. Improving drug delivery technology for treating neurodegenerative disease. Expert Opinion on Drug Delivery, 13(7), 1029-1043.
  • [49] Hosseinidoust Z., Park B.W., Singh A.V., Sitti M., Yasa O., 2017. Microemulsion Based Soft Bacteria Driven Microswimmers for Active Cargo Delivery. ACS Nano, 11(10), 9759-9769.
  • [50] Gidwani M., Singh A.V., 2014. Nanoparticle enabled drug delivery across the blood brain barrier: in vivo and in vitro models, opportunities and challenges. Current Pharmaceutical Biotechnology, 14(14), 1201-1212.
  • [51] Lovley D.R., Walker D.J.F., 2019. Geobacter Protein Nanowires. Frontiers in Microbiology, 10, 2078.