Variable-Speed Direct-Drive Permanent Magnet Synchronous Generator Wind Turbine Modeling and Simulation

In this study, the importance, the position, and the encouragements of wind energy which is a type of renewable energy in the world and in Turkey have been mentioned briefly. Also, wind turbines which have lost their importance from past to present and have been used today are discussed concisely. As the main topic of the study, the Permanent Magnet Synchronous Generator (PMSG) Direct Drive Wind Turbine has been mathematically modeled, and Back-to-back power converter was used and controlled. Then, findings of the study were supported by simulation.

___

  • T.C. Enerji ve Tabii Kaynaklar Bakanlığı, Enerji İşleri Genel Müdürlüğü, Yenilenebilir Enerji, Rüzgar Enerjisi Nedir?, http://www.yegm.gov.tr/ yenilenebilir/ruzgar-ruzgar_enerjisi.aspx (Access Date:21.01.2019).
  • Ragheb M., Ragheb A. M., 2011. Wind Turbine Theory – The Betz Equation and Optimal Rotor Tip Speed Ratio. Fundamental and Advanced Topics in Wind Power (Editor: Carriveau R.), InTechOpen, pp. 19-38, doi: 10.5772/731.
  • Ackermann T., 2005. Wind Power in Power Systems, pp. 33-34, John Wiley and Sons, West Sussex, England.
  • Çetin N. S., Yurdusev M. A., Ata R., Özdamar A., 2005. Assessment of Optimum Tip Speed Ratio of Wind Turbines. Mathematical and Computational Applications, 10(1), pp.147-154.
  • Kumsuwan Y., Jansuya P., 2013. Design of MATLAB/Simulink Modeling of Fixed-Pitch Angle Wind Turbine Simulator. 10th Eco-Energy and Materials Science and Engineering, Muang, Ubon- Ratchathani, Thailand, 5-8 December, pp.362-370.
  • Gürkaynak Y., 2006. Modeling and Control of Variable-Speed Direct-Drive Wind Power Plant. M.Sc. Thesis, Istanbul Technical University, İstanbul.
  • Wang C. N., Lin W. C., Le X. K., 2014. Modelling of a PMSG Wind Turbine with Autonomous Control. Mathematical Problems in Engineering, 2014, doi: 10.1155/2014/856173.
  • Linus R. M., Damodharan P., 2015. Maximum Power Point Tracking of PMSG based Grid Connected WECS using Quadrature Axis Current. 4th International Conference on Renewable Energy Research and Applications, Palermo, Italy, 22-25 November, pp. 671-676.
  • Smida M. B., Sakly A., 2015. Pitch Angle Control for Variable Speed Wind Turbines. Journal of Renewable Energy and Sustainable Development (RESD), 1(1) pp. 81-88.
  • Bin Q., Xuexiang J., Yulin Z., Qing T., 2014. The Maximum Power Control of Direct-Drive Wind Turbine. 26th Chinese Control and Decision Conference (CCDC), Changsha, China, 31 May – 2 June, pp. 4834-4839.
  • Pidiiti T., Tulasi Ram Das G., 2017. Power Maximization and Control of PMSG Wind Energy System without Wind Speed Sensors. International Journal of Control Theory and Applications, 10, pp. 253-260.
  • Hemeida A. M., Farag W. A., Mahgoub O. A., 2011. Modeling and Control of Direct Driven PMSG for Ultra Large Wind Turbines. International Journal of Energy and Power Engineering, 5(11), pp. 1269-1275.
  • Wu Z., Dou X., Chu J., Hu M., 2013. Operation and Control of a Direct-Driven PMSG-Based Wind Turbine System with an Auxiliary Parallel Grid-Side Converter. Energies, 6, pp. 3405-3421.
  • Hao H., Bo G., Yan R., Hui H., 2015. Simulation and Analysis of Direct-driven Wind Turbine. International Journal of Online Engineering (iJOE), 11(5), pp. 17-23.
Kocaeli Journal of Science and Engineering-Cover
  • Yayın Aralığı: 2
  • Başlangıç: 2018
  • Yayıncı: Kocaeli Üniversitesi Fen Bilimleri Enstitüsü