WO3 Katkılı Manyetik Dendrimerlerin Katalitik Davranışlarının İncelenmesi

Bu çalışmada, WO3 nanoparçacıklar ile dekore edilmiş manyetik poliamidoamin (PAMAM) dendrimerler üretildi ve 4-nitrofenolün indirgenmesi işleminde kullanıldı. Bunun için Fe3O4 süperparamanyetik demir oksit nanoparçacıklar manyetik çekirdek olarka üretildi. Üretimde hidrotermal metot kullanıldı. Manyetik çekirdeğin manyetik özelliğinin kaybolaması için ikinci jenerasyon PAMAM dendrimerler ile kaplandı. PAMAM kaplı çekirdek@kabuk yapı WO3 nanoparçacıklar ile dekore edildi ve Fe3O4@2G/WO3 manyetik dendrimer nanokompozitler elde dilmiş oldu. Elde edilen yapıların yapısal özellikleri SEM, TEM, EDX, XRD gibi mikroskobik, spektroskopik ve kristalografik metotlar ile incelendi. Manyetik özellikler titreşimli numune magnetometresi ile incelenirken katalitik performans is UV-vis spektroskopisi ile incelendi. Manyetik dendrimerler 4-NPnin indirgenmesinde kullanıldı bu işlem sırasında hız sabiti kapp değeri ise 4x10-3 s-1 olarak belirlendi.

INVESTIGATION OF CATALYTIC BEHAVIOUR OF WO3 DOPED MAGNETIC DENDRIMERS

In this work, WO3 nanoparticle decorated nanoparticle decorated magnetic poliamidoamin (PAMAM) dendrimer nanocomposites were fabricated and used as a catalyser for the reduction of 4-nitrophenol (4-NP). Fe3O4 superparamagnetic iron oxide nanoparticles were used as magnetic core. Magnetic iron oxide nanoparticles were produced using hydrothermal synthesis. Magnetic nanoparticle core was covered with PAMAM dendrimers. The dendrimers used in the covering process was 2nd generation dendrimers which proposed to protect nanoparticles from losing their magnetic characteristics. PAMAM coated core@shell structure was decorated with WO3 nanoparticles where Fe3O4@G2/WO3 magnetic dendrimer composites were obtained. Structural characterization of magnetic dendrimers was performed using microscopic, spectroscopic and crystallographic methods where SEM, TEM, EDX, XRD methods were used. Vibrating sample magnetometry was used in the assessment of magnetic characteristics. Caraltytic performance of the magnetic dendrimers were tracked using UV-vis spectroscopy. Magnetic dendrimers were used for the reduction on 4-NP. Reaction rate coefficient kapp was calculated and found as 4x10-3 s-1.

___

  • [1] M. M. Koç and G. E. Ragkousis, “AFM induced diffusion of large scale mobile HOPG defects,” Appl. Nanosci., vol. 9, no. 7, 2019.
  • [2] D. Vikraman and H. J. Park, “Shape-selective synthesis of NiO nanostructures for hydrazine oxidation as a nonenzymatic amperometric sensor,” RSC Adv., vol. 6, no. 89, pp. 86101–86107, Sep. 2016.
  • [3] S. A. Kulkarni, P. S. Sawadh, P. K. Palei, and K. K. Kokate, “Effect of synthesis route on the structural, optical and magnetic properties of Fe3O4 nanoparticles,” Ceram. Int., vol. 40, no. 1 PART B, pp. 1945–1949, Jan. 2014.
  • [4] C. Binns et al., “Preparation of hydrosol suspensions of elemental and core-shell nanoparticles by co-deposition with water vapour from the gas-phase in ultra-high vacuum conditions,” J. Nanoparticle Res., vol. 14, no. 9, p. 1136, Aug. 2012.
  • [5] E. Roduner, “Size matters: Why nanomaterials are different,” Chem. Soc. Rev., vol. 35, no. 7, pp. 583–592, Jun. 2006.
  • [6] N. Aslan, B. Ceylan, M. M. Koç, and F. Findik, “Metallic nanoparticles as X-Ray computed tomography (CT) contrast agents: A review,” J. Mol. Struct., vol. 1219, p. 128599, Nov. 2020.
  • [7] S. Aktas, S. C. Thornton, C. Binns, and P. Denby, “Gas phase synthesis of core-shell Fe@FeO x magnetic nanoparticles into fluids,” J. Nanoparticle Res., vol. 118, p. 365, 2016.
  • [8] J. Safaei-Ghomi and F. Eshteghal, “Nano-Fe3O4/PEG/succinic anhydride: A novel and efficient catalyst for the synthesis of benzoxanthenes under ultrasonic irradiation,” Ultrason. Sonochem., vol. 38, pp. 488–495, Sep. 2017.
  • [9] S. R. Krishnakumar et al., “Magnetic linear dichroism studies of in situ grown NiO thin films,” J. Magn. Magn. Mater., vol. 310, no. 1, pp. 8–12, Mar. 2007.
  • [10] Y. Zhang, Y. Chen, T. Wang, J. Zhou, and Y. Zhao, “Synthesis and magnetic properties of nanoporous Co3O4 nanoflowers,” Microporous Mesoporous Mater., vol. 114, no. 1–3, pp. 257–261, Sep. 2008.
  • [11] N. Kurnaz Yetim, F. Kurşun Baysak, M. M. Koç, and D. Nartop, “Characterization of magnetic Fe3O4@SiO2 nanoparticles with fluorescent properties for potential multipurpose imaging and theranostic applications,” J. Mater. Sci. Mater. Electron., vol. 31, no. 20, pp. 18278–18288, 2020.
  • [12] M. M. Koç, N. Aslan, A. P. Kao, and A. H. Barber, “Evaluation of X-ray tomography contrast agents: A review of production, protocols, and biological applications,” Microsc. Res. Tech., vol. 82, no. 6, 2019.
  • [13] J. Luan and A. Plaisier, “Study on treatment of wastewater containing nitrophenol compounds by liquid membrane process,” J. Memb. Sci., vol. 229, no. 1–2, pp. 235–239, Feb. 2004.
  • [14] Z. D. Pozun et al., “A systematic investigation of p -nitrophenol reduction by bimetallic dendrimer encapsulated nanoparticles,” J. Phys. Chem. C, vol. 117, no. 15, pp. 7598–7604, Apr. 2013.
  • [15] N. Kurnaz Yetim, N. Aslan, and M. M. Koç, “Structural and catalytic properties of Fe3O4 doped Bi2S3 novel magnetic nanocomposites: P-Nitrophenol case,” J. Environ. Chem. Eng., vol. 8, no. 5, p. 104258, 2020.
  • [16] A. Serrà, R. Artal, M. Pozo, J. Garcia-Amorós, and E. Gómez, “Simple Environmentally-Friendly Reduction of 4-Nitrophenol,” Catal. 2020, Vol. 10, Page 458, vol. 10, no. 4, p. 458, Apr. 2020.
  • [17] N. Kurnaz Yetim and E. Hasanoğlu Özkan, “Synthesis of Au-doped magnetic nanocomposites: structural, magnetic, and catalytic properties,” J. Mater. Sci. Mater. Electron., vol. 32, no. 20, pp. 24766–24774, Oct. 2021.
  • [18] C. Pan et al., “Facile fabrication of steam-exploded poplar loaded with non-metal-doped Ni-Fe nanoparticles: Catalytic activities in 4-nitrophenol reduction and electrocatalytic reaction,” Arab. J. Chem., vol. 15, no. 7, p. 103944, Jul. 2022.
  • [19] K. Saravanakumar, V. S. Priya, V. Balakumar, S. L. Prabavathi, and V. Muthuraj, “Noble metal nanoparticles (Mx = Ag, Au, Pd) decorated graphitic carbon nitride nanosheets for ultrafast catalytic reduction of anthropogenic pollutant, 4-nitrophenol,” Environ. Res., vol. 212, p. 113185, Sep. 2022.
  • [20] X. Liu et al., “Microwave-assisted synthesis of 2D Zr-MOF nanosheets supported gold nanocomposites as efficient catalysts for the reduction of 4-nitrophenol,” J. Alloys Compd., vol. 922, p. 165939, Nov. 2022.
  • [21] N. Sahiner, A. Kaynak, and S. Butun, “Soft hydrogels for dual use: Template for metal nanoparticle synthesis and a reactor in the reduction of nitrophenols,” J. Non. Cryst. Solids, vol. 358, no. 4, pp. 758–764, Feb. 2012.
  • [22] G. Kibar and D. Ş. Ö. Dinç, “In-situ growth of Ag on mussel-inspired polydopamine@poly(M-POSS) hybrid nanoparticles and their catalytic activity,” J. Environ. Chem. Eng., vol. 7, no. 5, p. 103435, Oct. 2019.
  • [23] N. Kurnaz Yetim, M. M. Koç, and D. Nartop, “Magnetic dendrimer-encapsulated metal nanoparticles (Au, Ag): effect of dendrimerization on catalytic reduction of 4-nitrophenol,” J. Iran. Chem. Soc., vol. 19, no. 6, pp. 2569–2580, Jun. 2022.
  • [24] N. Kurnaz Yetim, F. Kurşun Baysak, M. M. Koç, and D. Nartop, “Synthesis and characterization of Au and Bi2O3 decorated Fe3O4@PAMAM dendrimer nanocomposites for medical applications,” J. Nanostructure Chem., vol. 11, pp. 589–599, Feb. 2021.
  • [25] U. Kurtan and A. Baykal, “Fabrication and characterization of Fe3O4@APTES@PAMAM-Ag highly active and recyclable magnetic nanocatalyst: Catalytic reduction of 4-nitrophenol,” Mater. Res. Bull., vol. 60, pp. 79–87, Dec. 2014.
  • [26] M. Ma et al., “Gold nanoparticles supported by amino groups on the surface of magnetite microspheres for the catalytic reduction of 4-nitrophenol,” J. Mater. Sci., vol. 54, no. 1, pp. 323–334, Jan. 2019.
  • [27] H. Veisi, Z. Joshani, B. Karmakar, T. Tamoradi, M. M. Heravi, and J. Gholami, “Ultrasound assisted synthesis of Pd NPs decorated chitosan-starch functionalized Fe3O4 nanocomposite catalyst towards Suzuki-Miyaura coupling and reduction of 4-nitrophenol,” Int. J. Biol. Macromol., vol. 172, pp. 104–113, Mar. 2021.
Kırklareli Üniversitesi Mühendislik ve Fen Bilimleri Dergisi-Cover
  • ISSN: 2458-7494
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 2015
  • Yayıncı: Kırklareli Üniversitesi