MODİFİYE EDİLMIŞ METAL AUXETIC YAPININ MEKANİK DAVRANIŞININ DENEYSEL VE SAYISAL OLARAK İNCELENMESİ

İnsanlar geçmişten günümüze etraflarındaki malzemeleri en iyi şekilde kullanmak için yollar aramışlar ve bu alanda doğadan esinlenerek çeşitli yapılar ortaya çıkarmışlardır. Bunlardan birisi, ağırlıkları düşük, basınç dayanımı yüksek ve sert olmaları nedeniyle enerji emiciler dâhil olmak üzere çeşitli uygulamalarda yaygın olarak kullanılan kafes yapılardır. Yeni bir kafes yapı tipi olan auxetic yapılar, geometrik yapılarından dolayı negatif Poisson oranına sahiptirler ve bu özelliği nedeniyle, kayma mukavemeti, penetrasyon direnci, artan kırılma tokluğu ve çatlama ve yüksek enerjiye karşı direnç gibi özelliklere sahiptir. Bu makalede, 3B metal yazıcı yöntemi kullanılarak yapılan auxetic panellerin mekanik davranışı, sonlu elemanlar yöntemi ile ve deneysel olarak incelenmiştir. Nümerik modelin sonuçlarının doğruluğu, deneysel testlerin sonuçları kullanılarak kontrol edilmiştir. Bu amaçla DMLS yöntemi ile metal esaslı AlS10Mg Alüminyum bileşiminden numuneler yapılmıştır. Numuneleri üretmek için 3B baskı yöntemi kullanılmıştır. Daha sonra deneysel testler yapılarak bu malzemelerin mekanik özellikleri çekme testi ile belirlenmiş ve sonlu eleman simülasyonlarında kullanılmıştır. Modelin uygunluğu belirlendikten sonra, parametrik bir çalışma ile uygun geometriyi belirlemek için sonlu elemanlar simülasyon sonuçları kullanılmıştır. Sayısal çalışma için, ABAQUS yazılımı kullanılmış olup modellemede doğrusal olmayan sonlu elemanlar yöntemi kullanılmıştır.

EXPERIMENTAL AND NUMERICAL INVESTIGATION OF THE MECHANICAL BEHAVIOR OF THE MODIFIED METAL AUXETIC STRUCTURE

Humans have always sought the optimal use of materials around them and, in this field, inspired by nature, have succeeded in inventing various structures. As one example, lattice structures, which are lightweight, strong, and stiff, are used widely in various applications, including energy absorbers. Lattice structures with a negative Poisson's ratio have been developed as a new type of lattice structure. As a result of this feature, auxetic structures have unique properties like shear strength, penetration resistance, fracture toughness, crack resistance, and high energy absorbability. In this paper, the mechanical behavior of the auxetic panels made using the 3D metal printer method is investigated by experimental tests and finite element methods. Experiments are used to verify the accuracy of the numerical model. Using the DMLS method, samples were prepared from metal-based AlS10Mg Aluminum composition. The 3D printing method was used to fabricate samples. Afterwards, experimental tests were made and the mechanical properties of these materials were determined by tensile test and used in finite element simulations. Following the confirmation of the model's accuracy, the finite element simulation results are used to perform a parametric study and determine the appropriate geometry. The numerical analysis is conducted using ABAQUS software, which uses the nonlinear finite element method.

___

  • Scarpa, F., Auxetic materials for bioprostheses [In the Spotlight]. IEEE Signal Processing Magazine, 25(5), pp. 128-126, 2008
  • Xu, B., Arias, F., Brittain, S.T., Zhao, X.M., Grzybowski, B., Torquato, S. and Whitesides, G.M., Making negative Poisson's ratio microstructures by soft lithography. Advanced materials, 11(14), pp.1186-1189. 1999
  • Bezazi, A. and Scarpa, F., Mechanical behaviour of conventional and negative Poisson’s ratio thermoplastic polyurethane foams under compressive cyclic loading. International Journal of fatigue, 29(5), pp.922-930, 2007
  • Bezazi, A. and Scarpa, F., Tensile fatigue of conventional and negative Poisson’s ratio open cell PU foams. International Journal of Fatigue, 31(3), pp.488-494, 2009.
  • Evans, K.E. and Alderson, A., Auxetic materials: functional materials and structures from lateral thinking!. Advanced materials, 12(9), pp.617-628, 2000.
  • Grima, J.N., Caruana-Gauci, R., Dudek, M.R., Wojciechowski, K.W. and Gatt, R., Smart metamaterials with tunable auxetic and other properties. Smart Materials and Structures, 22(8), p.084016, 2013.
  • Grima, J.N., Jackson, R., Alderson, A. and Evans, K.E., Do zeolites have negative Poisson's ratios?. Advanced Materials, 12(24), pp.1912-1918, 2000.
  • Wang, Y.C. and Lakes, R., Analytical parametric analysis of the contact problem of human buttocks and negative Poisson's ratio foam cushions. International Journal of Solids and Structures, 39(18), pp.4825-4838, 2002.
  • Ma, Y., Scarpa, F., Zhang, D., Zhu, B., Chen, L. and Hong, J., A nonlinear auxetic structural vibration damper with metal rubber particles. Smart Materials and Structures, 22(8), p.084012, 2013.
  • Bertoldi, K., Reis, P.M., Willshaw, S. and Mullin, T., Negative Poisson's ratio behavior induced by an elastic instability. Advanced materials, 22(3), pp.361-366, 2010.
  • Voigt W. Lehrbuch der Kristallphysik Teubner; 1928.
  • Lakes, R., Foam structures with a negative Poisson's ratio. Science, 235(4792), pp.1038-1040, 1987.
  • Zhang, J., Lu, G. and You, Z., Large deformation and energy absorption of additively manufactured auxetic materials and structures: A review. Composites Part B: Engineering, 201, p.108340, 2020.
  • Meena, K. and Singamneni, S., A new auxetic structure with significantly reduced stress concentration effects. Materials & Design, 173, p.107779, 2019.
  • Ren, X., J. Shen, A. Ghaedizadeh, H. Tian, Y.M. Xie, A simple auxetic tubular structure with tuneable mechanical properties. Smart Materials and Structures. 25(6), 065012 (2016).
  • Ren, X., Shen, J., Ghaedizadeh, A., Tian, H. and Xie, Y.M., A simple auxetic tubular structure with tuneable mechanical properties. Smart Materials and Structures, 25(6), p.065012, 2016.
  • Guo, Y., Zhang, J., Chen, L., Du, B., Liu, H., Chen, L., Li, W. and Liu, Y., Deformation behaviors and energy absorption of auxetic lattice cylindrical structures under axial crushing load. Aerospace Science and Technology, 98, p.105662, 2020.
  • Nedoushan, R.J., Improvement of energy absorption of expanded metal tubular structures under compressive loads. Thin-Walled Structures, 157, p.107058, 2020.
  • Peixinho, N., Carvalho, O., Areias, C., Pinto, P. and Silva, F., Compressive properties and energy absorption of metal-polymer hybrid cellular structures. Materials Science and Engineering: A, 794, p.139921, 2020.
  • Lee, W., Jeong, Y., Yoo, J., Huh, H., Park, S.J., Park, S.H. and Yoon, J., Effect of auxetic structures on crash behavior of cylindrical tube. Composite Structures, 208, pp.836-846, 2019.
  • Esmaeili, J., Andalibi, K., Gencel, O., Maleki, F. K., Maleki, V. A., Pull-out and bond-slip performance of steel fibers with various ends shapes embedded in polymer-modified concrete. Construction and Building Materials, 271, 121531, 2021.
  • Ghaderi, M., Maleki, V.A. and Andalibi, K., Retrofitting of unreinforced masonry walls under blast loading by FRP and spray on polyurea. Fen Bilimleri Dergisi (CFD), 36(4), 2015.
  • Esmaeili, J., Andalibi, K. and Gencel, O., Mechanical characteristics of experimental multi-scale steel fiber reinforced polymer concrete and optimization by Taguchi methods. Construction and Building Materials, 313, p.125500, 2021.
Kırklareli Üniversitesi Mühendislik ve Fen Bilimleri Dergisi-Cover
  • ISSN: 2458-7494
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 2015
  • Yayıncı: Kırklareli Üniversitesi