DÜZELTME: METRO HATLARINDAKİ RAY GERİLİMİNİ EN 50122 STANDARDINA UYGUN OLARAK SINIRLANDIRILMADA KULLANILAN YÖNTEMLERİN KARŞILAŞTIRILMASI

Bu çalışmada DC beslemeli raylı sistemlerde ray toprak geriliminin devre topolojisi üzerinden analizi yapılarak bu problemin çözümü için kullanılan kontrol yöntemleri karşılaştırmalı olarak anlatılmıştır. Devre modeliyle birlikte ilgili standart anlatılarak, uygulanan yöntemlerin başarı oranı önceki durumla karşılaştırılarak hesaplanmıştır. EN 50122 standardı ilgili kısımda anlatılarak işletmenin sağlaması gereken değerler verilmiştir. Çalışma için ray geriliminin düşürülmesi için işletmede tercih edilmesi muhtemel yöntemler benzetim üzerinden grafiklerle anlatılmıştır. Bu yöntemlerden besleme gerilimi değiştirilerek sistemin her bir gerilim seçiminde ayrı ayrı çalıştırılması, sistemin besleme bölgesine ek bir besleme merkezi ilave edilmesi, ray iletkenine paralel bir iletken bağlanması, araç sinyalizasyon teknolojisi yardımıyla enerjinin verimli kullanılması ve VLD (gerilim limitleme cihazı ) ekipmanının kullanılması yöntemleri tercih edilerek sistem çözümlenmeye çalışılmıştır. Çalışmada VLD ekipmanı çalışma algoritması verilirken yöntemlere ait elde edilen sonuçlar ve iyileştirme oranları karşılaştırmalı olarak tablo ile verilmiştir. Sonuç olarak kullanılan bu beş yöntemle sırasıyla % 12.5 ile % 56.2 arasında, % 71.4, % 54.3 ve % 74.3 başarı elde edilmiştir. Son yöntemde ise ray gerilimi kısa devreden dolayı sıfır olduğu için % 100 başarı sağlanmıştır.Bu makalenin ilk hali 30-06-2021 tarihinde yayınlandı. https://dergipark.org.tr/tr/pub/klujes/issue/63402/865974 
Anahtar Kelimeler:

Analiz, Gerilim, Kontrol, Ray, Toprak.

ERRATUM: COMPARISON OF THE METHODS USED IN LIMITING RAIL VOLTAGE IN METRO LINES IN ACCORDANCE WITH EN 50122 STANDARD

In this study, the analysis of the rail ground voltage in DC powered rail systems over the circuit topology and the control methods used to solve this problem are explained comparatively. By explaining the relevant standard with the circuit model, the success rate of the applied methods is calculated by comparing with the previous case. The EN 50122 standard is described in the relevant section and the values that the operation must provide are given. For the study, the methods that are likely to be preferred in the enterprise to reduce the rail voltage are explained with graphics by simulation. Among these methods, operating the system separately for each voltage selection by changing the supply voltage, adding an additional feeding center to the supply area of the system, connecting a conductor parallel to the rail conductor, using the energy efficiently with the help of vehicle signaling technology and using the VLD (voltage limiting device) equipment are preferred and system has been tried to be resolved. While the VLD equipment working algorithm is given in the study, the results and improvement rates obtained from the methods are given in a comparative table. As a result, success was achieved between % 12.5 and % 56.2, % 71.4, % 54.3 and % 74.3 with these five methods. In the last method, % 100 success has been achieved since the rail voltage is zero due to short circuit. KLUJES Cilt 7 Sayı 1 Haziran 2021 Sayısındaki Aynı Başlıklı Makalenin Düzeltilmiş Halidir.The original article was published on 30 June 2021. https://dergipark.org.tr/en/pub/klujes/issue/63402/865974 

___

  • Xu, S.,Y., Li, W., Wang, Y., Q. Effects of Vehicle Running Mode on Rail Potential and Stray Current in DC Mass Transit Systems. Vehicular Technology, IEEE Transactions on. 62, (2013), 3569-3580.
  • Ibrahem, A., Elrayyah, A., Sozer, Y., Abreu, A. DC Railway System Emulator for Stray Current and Touch Voltage Prediction. IEEE Transactions on Industry Applications. 53(1), 2017, 439-446.
  • Memon, S. A., Fromme, P. Stray current corrosion mitigation, testing and maintenance in DC transit system. International Journal of Transport Development and Integration. 1(3), (2017), 511-519.
  • Charalambous, C., Cotton, I., Aylott, P., Kokkinos, N. A Holistic Stray Current Assessment of Bored Tunnel Sections of DC Transit Systems. Power Delivery, IEEE Transactions on. 28, (2013), 1048-1056.
  • Alamuti, M., M., Nouri, H., Jamali, S., Effects of earthing systems on stray current for corrosion and safety behaviour in practicalmetro systems, IET Electr. Syst. Transp., 1, (2011), 69–79.
  • Tzeng, Y., S., Lee, C.,H. Analysis of Rail Potential and Stray Currents in a Direct-Current Transit System. Power Delivery, IEEE Transactions on. 25, (2010), 1516 - 1525.
  • Vranesic, K., Serdar, M., Lakusic, S. Analysis of electrical potential and stray currents at DC transit system. International Conference on Sustainable Materials, Systems and Structures (SMSS 2019), 40-44.
  • Brenna, A., Lazzari, L., Ormellese, M. Stray current control by a new approach based on current monitoring on a potential probe. Corrosion Engineering, Science and Technology. 52(5), (2017), 359-364.
  • Yang, X.,Hao, X., Zheng, T. Stray Current and Rail Potential Dynamic Simulation System Based on Bidirectional Variable Resistance Module. Diangong Jishu Xuebao/Transactions of China Electrotechnical Society. 34, (2019), 69-81.
  • Zakowski, K. The determination and identification of stray current source influences on buried pipelines using time/frequency analysis. Anti-corrosion Methods and Materials - Anti-Corros Method Mater. 56, (2009), 330-333.
  • Du, G., Wang, C., Liu, J., Li, G., Zhang, D. Effect of Over Zone Feeding on Rail Potential and Stray Current in DC Mass Transit System. Mathematical Problems in Engineering. 2, (2016), 1-15.
  • Niasati, M., Gholami, A. Overview of stray current control in DC railway systems. International Conference on Railway Engineering, (2008), 1 - 6.
  • Charalambous, C., Buxton, D., Aylott, P. Practical Contemplation of Stray Current Calculation and Monitoring in DC Mass Transit Systems. IEEE Vehicular Technology Magazine. 11(2), (2016), 24-31.
  • Susanto, A., Koleva, D., Copuroglu, O., Beek, K., Breugel, K. Mechanical, Electrical and Microstructural Properties of Cement-Based Materials in Conditions of Stray Current Flow. Journal of Advanced Concrete Technology. 11, (2013), 119-134.
  • Akçay, M., T., Kocaarslan, İ. Simulation of Multi-Vehicle Signaling System with Matlab / Simulink and Design of Train Timetable, Journal of Science and Engineering, 6, (2019), 799-807.
  • He, J., Yu, L., Wang, X., Song, X. Simulation of transient skin effect of DC railway system based on MATLAB/simulink. Power Delivery, IEEE Transactions on. 28, (2013), 145-152.
  • Ogunsola, A., Mariscotti, A., Sandrolini, L. Estimation of Stray Current From a DC-Electrified Railway and Impressed Potential on a Buried Pipe. IEEE Transactions on Power Delivery. 27, (2012), 2238-2246.
  • Tian, Z., Hillmansen, S., Roberts, C., Weston, P., Chen, L., Zhao, N., Su, S., Xin, T. Modeling and simulation of DC rail traction systems for energy saving. 2014 17th IEEE International Conference on Intelligent Transportation Systems, ITSC. (2014), 2354-2359
Kırklareli Üniversitesi Mühendislik ve Fen Bilimleri Dergisi-Cover
  • ISSN: 2458-7494
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 2015
  • Yayıncı: Kırklareli Üniversitesi