Odunun yapışma kabiliyetini etkileyen faktörlerin incelenmesi

Çalışmanın amacı: Bu çalışmada, uludağ göknarı (Abies bornmülleriana Mattf.), kestane (Castanea sativa Mill.) ve kavak (Populus tremula L.) odunlarında yapışma kabiliyetine etki eden faktörler araştırılmıştır. Materyal ve Yöntem: Odunun farklı ıslanabilirlik özelliğe sahip olması, yapışma sürecini zorlaştıran önemli bir problemdir. Mobilya endüstrisinde yaygın olarak kullanılan PVAc-D3 ve PU-D4 yapıştırıcılarının ıslatma özellikleri temas açısı ölçümü ile değerlendirilmiştir. Lamine edilmiş kaplamalar, 2 saat süreyle -20 °C ve 60 °C sıcaklıklarda su ve su buharında bekletme işlemlerine tabii tutulmuş ve örneklerin yapışma mukavemetleri belirlenmiştir. Ayrıca yapıştırıcıların ağaç malzemeyi ıslatabilme kabiliyeti temas açısı ölçüm analizi ile değerlendirilmiştir. Islanabilirliğin belirlenmesi için yapışma hattı, taramalı elektron mikroskobu (SEM) ve enerji dağılımlı X-ışını analizi (EDX) ile incelenmiştir. Sonuçlar: Tüm işlemler için kestane odunun yapışma direncinin kavak ve göknar odununa göre daha yüksek olduğu belirlenmiştir. Genel olarak sonuçlar, uygulanan işlemlerin her iki yapıştırıcı tipi için yapışma direncinde bir azalmaya neden olduğunu gösterdi. En düşük yapışma direnci, suda bekletilen örneklerde belirlenmiştir. Yüzey ıslanabilirlik ölçümlerinin, yapışma katmanın oluşması hakkında bilgi verici olduğu görülmüştür. EDX analizine göre, yapıştırıcıdan oduna geçişte karbon ve oksijen azalması gözlemlenmiştir. Araştırma vurguları: Yapışma kabiliyeti doğrudan odunun yoğunluğu ve çeşitli uygulama faktörleri ile ilgili olduğu belirlenmiştir. Kullanılan farklı odun türleri ve yapıştırıcılar ıslanabilme özelliğini etkiler.

Investigation of factors influencing on wood adhesion capability

Aim of the study: In this study, the influencing factors on the capability of adhesion in Uludag Fir (Abies bornmülleriana Mattf.), Chestnut (Castanea sativa Mill.) and Poplar (Populus tremula L.) woods were investigatedMaterial and Methods: An important problem is that wood have different wettability that makes the bonding process difficult. Influence of PVAc-D3 and PU-D4 adhesives, which are widely used in the furniture industry, on wetting properties was evaluated by contact angle measurement analysis. Bonding strengths of the laminated veneers, which were untreated, treated in two hours at -20 °C and 60 °C temperatures, water immersion, and water vapor, were determined. Influence of adhesives on the wetting properties was evaluated by contact angle measurement analysis. The adhesion line to determine wettability was investigated with scanning electron microscopy (SEM), and energy dispersive X-ray analysis (EDX).Main results: The results indicated that bonding strength of chestnut wood was determined to be higher than poplar and Uludag fir for all applications. The results generally showed that the applied treatments were resulted in a decrease in bonding strength for both types of adhesive. The lowest bonding strength was determined when the specimens were exposed to water immersion. The results clearly indicate that the surface wettability measurements were informative for forming of adhesion layers. According to the EDX analysis, a decrease of carbon and oxygen was observed in the transition from adhesive to wood.Research highlights: The adhesion capabilities were directly related to wood density and different treatment factors. The different wood species and adhesives used affected on wettability.

___

  • Altinok, M. (2002). Effect of the Elevated Temperatures on Bonding Performances of Glued Wood Joints. Journal of Polytechnic, 5(4), 341-345.
  • ASTM C 1113-99 (2004). Standard Test Method for Thermal Conductivity of Refractories by Hot Wire (Platinum Resistance Thermometer Technique). ASTM International; West Conshohocken, USA.
  • Aydin, I., Colak, S., Colakoglu, G. and Salih, E, (2004). A comparative study on some physical and mechanical properties of laminated veneer lumber (LVL) produced from Beech (Fagus orientalis L.) and Eucalyptus (Eucalyptus camaldulensis Dehn.) veneers. European Journal of Wood and Wood Products, 62(3), 218-220.
  • Bakar, B.F.A., Hiziroglu, S., and Tahir, P.M. (2013). Properties of some thermally modified wood species. Materials & Design, 43, 348-355.
  • BS EN 205 (1991). Test methods for wood adhesives for non-structural aplications: determination of tensile shear strength of Lap Joints. British Standarts, England.
  • Buyuksari, U., Akbulut, T., Guler, C. and As, N. (2011). Wettability and surface roughness of natural and plantation-grown narrow-leaved ash (Fraxinus angustifolia Vahl.) wood. BioResources, 6(4), 4721-4730.
  • Candan, Z., Hiziroglu, S., and McDonald, A.G. (2010). Surface quality of thermally compressed Douglas fir veneer. Materials & Design, 31(7), 3574-3577.
  • Colak, S., Aydin, I., Demirkir, C. and Colakoglu, G. (2004). Some technological properties of laminated veneer lumber manufactured from pine (Pinus sylvestris L.) veneers with melamine added-UF resins. Turkish Journal of Agriculture and Forestry, 28(2), 109-113.
  • Dundar, T., Akbulut, T., and Korkut, S. (2008). The effects of some manufacturing factors on surface roughness of sliced Makore (Tieghemella heckelii Pierre Ex A. Chev.) and rotary-cut beech (Fagus orientalis L.) veneers. Building and Environment, 43(4), 469-474
  • Frihart, C.R. (2005). Handbook of wood chemistry and wood composites. Chapter 9: Wood adhesion and adhesives. CRC Press, 215-278.
  • Gavrilovic-Grmusa, I., Dunky, M., Miljkovic, J. and Djiporovic-Momcilovic, M. (2012). Influence of the viscosity of UF resins on the radial and tangential penetration into poplar wood and on the shear strength of adhesive joints. Holzforschung, 66(7), 849-856.
  • Gu H.M. and Zink-Sharp A. (2005). Geometric model for softwood transverse thermal conductivity. Part 1. Wood and Fiber Science, 37 (4), 699-711.
  • Gu, R., Mu, B. and Yang, Y. (2016). Bond Performance and Structural Characterization of Polysaccharide Wood Adhesive Made from Konjac Glucomannan / Chitosan / Polyvinyl Alcohol. BioResources, 11(4), 8166-8177.
  • Gardner, D. J., Generalla, N. C., Gunnells, D. W., & Wolcott, M. P. (1991). Dynamic wettability of wood. Langmuir, 7(11), 2498-2502.
  • Kamala, B.S., Kumar, P., Rao, R.V. and Sharma, S.N, (1999). Performance test of laminated veneer lumber (LVL) from rubber wood for different physical and mechanical properties. European Journal of Wood and Wood Products, 57(2), 114-116.
  • Kamke, F.,A., Lee, J.,N. (2007). Adhesive Penetration In Wood A Review. Wood and Fiber Science, 39(2), 205 – 220.
  • Kaya, A, (1977). Tutkallar ve Tutkallama Makinaları. Ankara, 1-14.
  • Kaygin, B., Tankut, A.N. (2008). Comparison of bonding strengths of the sapwoods and heartwoods of tree species used in wooden shipboard building. African Journal of Biotechnology, 7(24), 4620-4627.
  • Kilic, Y., Colak, M., Baysal, E. and Burdurlu, E. (2006). An investigation of some physical and mechanical properties of laminated veneer lumber manufactured from black alder (Alnus glutinosa) glued with polyvinyl acetate and polyurethane adhesives. Forest Products Journal, 56(9), 56.
  • Omaç, F., Ozyurek, D., Erer, M. (2017). Investigation of the Wetting Properties of Ternary Lead-Free Solder Alloys on Copper Substrate "Acta Phy. Polonica A, 131, 1, 165-167.
  • Selbo, M.L. (1975). Adhesive bonding of wood. US Department of Agriculture.
  • Shi, S.Q. and Gardner, D.J. (2001). Dynamic adhesive wettability of wood. Wood and Fiber Science, 33(1), 58-68.
  • Sogutlu, C. (2017). Determination of the effect of surface roughness on the bonding strength of wooden materials. BioResources, 12(1), 1417-1429.
  • Sulaiman, O., Salim, N., Hashim, R., Yusof, L.H.M., Razak, W., Yunus, N.Y.M., Hashim, W.S. and Azmy, M.H (2009). Evaluation on the suitability of some adhesives for laminated veneer lumber from oil palm trunks. Materials & Design, 30(9), 3572-3580.
  • TS 2471 (1976). Wood-determination of moisture content for physical and mechanical tests. Institute of Turkish Standards, Ankara, TURKEY.
  • TS 2472 (1976). Wood-determination of density for physical and mechanical tests. Institute of Turkish Standards, Ankara, TURKEY.
  • Uysal, B. and Kurt. S, (2005). Dimensional stability of laminated veneer lumbers manufactured by using different adhesives after the steam test. Gazi University Journal of Science, 18(4), 681-691.
  • Wang, S., Zhang, Y., & Xing, C. (2007). Effect of drying method on the surface wettability of wood strands. European Journal of Wood and Wood Products, 65(6), 437-442.
  • Yorur, H., Kurt, Ş., Uysal B, 2014. Bonding strength of oak with different adhesives after humid-water-heat tests. Journal of Adhesion Science and Technology, 28(7), 690-701.
  • Yorur, H., Erer, A.M., Oğuz, S. (2017). Effect of Surface Roughness on Wettability of Adhesive on Wood Substrates. 3rd International Conference on Science, Ecology and Technology.
  • Zhao, M. H., Chen, X. P., & Wang, Q. (2014). Wetting failure of hydrophilic surfaces promoted by surface roughness. Scientific Reports, 4, 537.
Kastamonu Üniversitesi Orman Fakültesi Dergisi-Cover
  • ISSN: 1303-2399
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2001
  • Yayıncı: Kastamonu Üniversitesi