Lignoselülozik Yüzeyler için Akıllı BiyomimetikYapay Form

Çalışmanın amacı: Bu çalışmada, lignoselülozik yüzeyler için akıllı biyomimetik yapay form oluşturup ahşap malzemenin hidrofobik ve manyetik özellik kazanması amaçlanmıştır. Materyal ve yöntem: Akıllı biyomimetik yapay yüzeyin oluşturulması için Demirli sülfat heptahidrat (FeSO4·7H2O), Manganez (II) klorür (MnCl2.4H2O), Etil alkol (EtOH), Sodyum hidroksit (NaOH) ve Potasyum nitrat (KNO3) kullanılarak masif yüzeye hidrotermal olarak uygulanmıştır. Hidrofobizasyon Oktadesiltriklorosilan (OTS, %95) kullanılarak sağlanmıştır. Modifikasyon çalışmalarını karakterize etmek için Fourier dönüşümü kızılötesi spektroskopisi (FTIR), X-ışını kırınımı (XRD), Taramalı elektron Mikroskopisi (SEM) ve Enerji dağıtıcı x-ışını (EDX) analizleri yapılmıştır. Hidrofobiklik özelliğinin belirlenmesi için su temas açısı (WCA) ve son olarak manyetik özelliklerini belirlemek için UV-Vis spektrometre cihazı kullanılmıştır. Temel sonuçlar: Yapılan karakterizasyon çalışmaları ahşap yüzeyde akıllı biyomimetik yapay form başarılı bir şekilde oluşturulduğunu göstermektedir. Yeni yüzeyin su temas açısı θγ 125° olarak belirlenmiştir. 200-800 nm dalga boyu aralığında absorbsiyon özellik göstermiştir. Araştırma vurguları: Bu çalışma sonucunda üretilen akıllı biyomimetik yapay form ahşabın suya ve güneş ışığına olan dayanımını artırdığı için yaşam alanlarından denizcilik sektörüne kadar birçok alandaki bakım maliyetlerini önemli ölçüde azaltabilir.

Intelligent Biomimetic Artificial Form for Lignocellulosic Surfaces

Aim of study: In this study, it is aimed to make the wood material hydrophobic and magnetic by creating a smart biomimetic artificial form for lignocellulosic surfaces. Material and methods: Ferrous sulfate heptahydrate (FeSO4·7H2O), Manganese (II) chloride (MnCl2.4H2O), Ethyl alcohol (EtOH), Sodium hydroxide (NaOH), and Potassium nitrate (KNO3) having implemented on the wood to the synthesis of the intelligent biomimetic surface. Hydrophobisation had supplied by Octadecyltrichlorosilane (OTS, 95%). Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Scanning electron microscopy (SEM), and Energy dispersive x-ray (EDX) having used for the characterization step. Water contact angle (WCA) had used for hydrophobicity. Finally, the UV-Vis spectrometer device had used to determine the magnetic properties. Main results: According to the characterizations, the smart biomimetic artificial form having been synthesized on a wood surface successfully. The water contact angle of the new surface having determined as θγ 125 °. It showed absorption properties in the wavelength range of 200-800 nm. Highlights: As a smart biomimetic artificial design has produced as a result of this study improves the resistance of wood to water and sunshine, this could be significantly diminished maintenance costs in many fields from living areas to the maritime industry.

___

  • Andersson, S., Serimaa, R., Paakkari, T., Saranpa¨a¨, P. & Pesonen, E. (2003). Crystallinity of wood and the size of cellulose crystallites in Norway spruce (Picea abies). Journal of Wood Science, 49, 531 -537.
  • Borysiak, S. & Doczekalska, B. (2005). X-ray Diffraction study of pine wood treated with NaOH fibers. Textiles Eastern Europe, 13, 87- 89.
  • Donath, S., Militz, H. & Mai, C. (2007). Weathering of silane treated wood, Holz. Roh. Werkst. 65, 35-42.
  • Eichhorn, S. J., Dufresne, A. & Aranguren, M. (2010). Review: current international research into cellulose nanofibers and nanocomposites. Journal of Materials Science, 45, 1-33.
  • Faux, O. (1991). Classification of Lignins from different botanical origins by FT-IR spectroscopy. Holzforschung, 45, 21-28.
  • Gao, L., Lu, Y., Zhan, X. & Sun, Q. (2015a). A robust, anti-acid, and high-temperature humidity-resistant superhydrophobic surface of wood based on a modified TiO2 film by fluoroalkyl silane. Surface and Coatings Technology, 262, 33-39.
  • Gan, W. T., Gao, L. K., Sun, F. Q., Jin, C. D., Lu, Y. & Li, J. (2015). Multifunctional wood materials with magnetic, superhydrophobic and anti- ultraviolet properties. Applied Surface Science, 322, 565-572.
  • Hakkou, M., Pétrissans, M. & Zoulalian, A. (2005). Investigation of wood wettability changes during heat treatment on the basis of chemical analysis. Polymer Degradation Stability Journal, 89, 1-5.
  • Hayoz, P., Peter, W. & Rogez, D. (2003). A new innovative stabilization method for the protection of natural wood. Prog. Org. Coat, 48, 297-309.
  • Jirous-Rajkovic, V., Bogner, A. & Radovan, D. (2004). The efficiency of various treatments in protecting wood surfaces against weathering. Surface and Coatings Technology, 87, 15-19.
  • Kumar, M., Gupta, R. C. & Sharma, T. (1993). Xray diffraction studies of acacia and eucalyptus wood chars. Journal of Materials Science. 28, 805.
  • Li, N., Xia, T., Heng, L. & Liu, L. (2013). Superhydrophobic Zr-based metallic glass surface with high adhesive force. Applied Physics Letters, 102, 251603.
  • Liang, C.Y. & Marchessault, R.H. (1959). Infrared Spectra of crystalline polysaccharides. hydrogen bonds in native celluloses. Journal of Polymer Science, 37, 385-395.
  • Lu, Y., Xiao, S., Gao, R., Li, J. & Sun, Q. (2014). Improved weathering performance and wettability of wood protected by CeO2 coating deposited onto the surface, Holzforschung, 68, 345-351.
  • Oka, H., Kataoka, Y., Osada, H. & Aruga, Y. (2007). Experimental study on electromagnetic wave absorbing control of coating-type magnetic wood using a grooving process. Journal of Magnetism and Magnetic Materials,310, E1028–E1029.
  • Oka, H., Hamano, H. & Chiba, S. (2004a). Experimental study on actuation functions of coating-type magnetic. Journal of Magnetism and Magnetic Materials, 272, E1693-E1694.
  • Oka, H., Hojo, A., Seki, K. & Takashiba, T. (2002a). Wood construction and magnetic characteristics of impregnated type magnetic wood. Journal of Magnetism and Magnetic Materials, 239, 617-619.
  • Oka, H., Narita, K., Osada, H. & Seki, K. (2002b). Experimental results on indoor electromagnetic wave absorber using magnetic wood. Journal of Applied Physics, 91, 7008- 7010.
  • Oka, H., Tokuta, H., Namizaki, Y. & Sekino, N. (2004b). Effects of humidity on the magnetic and woody characteristics of powder- type magnetic wood. Journal of Magnetism and Magnetic Materials, 272, 1515-1517.
  • Oka, H., Uchidate, S. & Sekino, N. (2011). Electromagnetic wave absorption characteristics of half carbonized powder-type magnetic wood. IEEE. Transactions on Magnetics, 47, 3078-3080.
  • Oka, H. & Fujita, H. (1999). Experimental study on magnetic and heating characteristics of magnetic wood. Journal of Applied Physics, 85(8), 5732-5734
  • Özdemir, F., Ramazanoglu. D., Tutus, A. (2018). Investigation of the effect of aging time, sanding and section direction on surface quality of fir wood, Journal of Bartin Faculty of Forestry, vol. 20 (2): 194-204.
  • Patachia, S., Croitoru, C. & Friedrich, C. (2012). Effect of uv exposure on the surface chemistry of wood veneers treated with ionic liquids. Applied Surface Science, 258, 6723-6729.
  • Ramazanoğlu, D. (2020). Design of smart biomimetic nanohybrid surface forms and investigation of hydrothermal modification on the lignocellulosic surface (Ph.D. Dissertation, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey).
  • Ramazanoğlu, D. & Özdemı̇r, F. (2020). Hidrotermal yaklaşımın lignoselülozik yüzeydeki akıllı nano biyomimetik yansıması. Turkish Journal of Forestry, 21(3), 324-331.
  • Ramazanoğlu, D. & Özdemir, F. (2021). ZnObased nano biomimetic smart artificial form located on lignocellulosic surface with hydrothermal approach. Kastamonu University Journal of Forestry Faculty, 21 (1), 12-20.
  • Salla, J., Pandey, K. K. & Srinivas, K. (2012). Improvement of uv resistance of Wood surfaces by using ZnO nanoparticles. Polymer Degradation Stability Journal, 97, 592-596.
  • Schwanninger, M., Rodrigues, J. C., Pereira, H. & Hinterstoisser, B. (2004). Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose. Vibrational Spectroscopy, 36, 23-40.
  • Waldron, R. D. 1955. Infrared spectra of ferrites. Physical Review Journals, American Physical Society, 99(6), 1727-1735.
  • Xia, T., Li, N., Wu, Y. & Liu, L. (2012). Patterned superhydrophobic surface based on pd based metallic glass. Applied Physics Letters, 101, 081601.
  • Zhu, Z., Li, X., Zhao, Q., Shi, Y., Li, H. & Chen, G. (2011). Surface photovoltage properties and photocatalytic activities of nanocrystalline CoFe2O4 particles with porous superstructure fabricated by a modified chemical coprecipitation method. Journal of Nanoparticle Research,13, 2147-2155
Kastamonu Üniversitesi Orman Fakültesi Dergisi-Cover
  • ISSN: 1303-2399
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2001
  • Yayıncı: Kastamonu Üniversitesi