Farklı ağaç türlerinden bağlayıcı olarak polietilen kullanılarak üretilen kontrplakların bazı mekanik özellikleri

Özet Çalışmanın amacı: Kontrplak sektöründe kullanılan formaldehit esaslı reçineler yerine bağlayıcı olarak atık polietilen kullanılmasıyla üretilmiş levhaların bazı mekanik özelliklerinin araştırılması amaçlanmış ve farklı ağaç türlerinden üretilmiş levhalar için optimum polietilen miktarları belirlenmeye çalışılmıştır. Çalışma alanı: Bu çalışma, Trabzon’daki Karadeniz Teknik Üniversitesi Orman Endüstri Mühendisliği Bölümü Pilot tesisinde yapılmıştır.Materyal ve Yöntem: Kayın (Fagus Orientalis Lipsky), kızılağaç (Alnus glutinosa subsp. barbata) ve sarıçam (Pinus sylvestris L.) kaplamalar, polietilen kontrplakların üretiminde kullanılmıştır. Üç farklı polietilen miktarı seçilmiştir (160, 200 ve 240 gr/m2). Üretilen levhaların y TS EN 323-1,  çekme makaslama direnci TS EN 314-1, eğilme direnci ve elastikiyet modülü ise TS EN 310 standartlarına göre belirlenmiştir. Sonuçlar: En iyi mekanik direnç değerleri, kayın ve kızılağaç için 200 gr/m2 polietilen miktarı kullanılarak üretilen levhalardan elde edilmiştir. Ayrıca, sarıçam için en iyi değerler ise, 160 gr/m2 polietilen miktarı kullanılarak üretilen levhalarda bulunmuştur. Araştırma vurguları: Bu çalışma, kontrplak endüstrisinde uygulanmasıyla birlikte hem polietilen atıkların geri dönüşümü sağlanabilir, hem de levhalardaki formaldehit salınımı önlenebilir. Polietilen ile üretilen kontrplakların atıkları, ahşap plastik kompozit panellerin üretiminde de kullanılabilir.

Some Mechanical Properties of Nylon Composite Plywood Produced from Different Wood Species

AbstractAim of study: Investigation of some mechanical properties of panels produced using polyethylene waste as adhesive instead of formaldehyde-based resins used in plywood was aimed and polyethylene amount was tried to determine for plywood produced from different wood species. Area of study: This study was conducted at the Pilot Facility of Department of Forest Industry Engineering, Karadeniz Technical University in Trabzon, Turkey.Material and Methods: Beech (Fagus Orientalis Lipsky), alder (Alnus glutinosa subsp. barbata) and Scots pine (Pinus sylvestris L.) veneers were used to produce polyethylene plywood. Three different polyethylene amounts was used (160, 200 and 240 gr/m2). Density, shear strength, bending strength and modulus of elasticity of plywood panels were determined according to TS EN 323-1, TS EN 314-1 and TS EN 310, respectively.Main results: The best mechanical strength values for beech and alder were obtained from panels produced using 200 gr/m2 polyethylene amounts. Moreover, these values for Scots pine were found in panels produced using 160 gr/m2 polyethylene amounts. Research highlights: When this study applies in the plywood industry, can provide to both recycle polyethylene waste and prevent formaldehyde release. Polyethylene plywood waste can be used production of wood plastic composite panels.

___

  • APA, 2010. The Engineered Wood Association. Technical Topics. Form No: TT-044B, March.
  • Aydin, I., Demirkir, C., Colak, S., Colakoglu, G. 2010. Evaluation of flours of different wood barks as filler in plywood panels. Third National Karadeniz Forestry Congress (20-22 May), 1825-1833, Artvin, Turkey.
  • Colak, S., Colakoglu, G. 2004. Volatile acetic acid and formaldehyde emission from plywood treated with boron compound. Building and Environment, 39, 533–536.
  • Colak, S., Ozturk, H., Demir, A. 2016. Some techonological properties of plywood produced using with nylon waste as adhesive. İleri Teknoloji Bilimleri Dergisi, 5 (2), 21-27.
  • Colakoglu, G., 1993. Effect of the production parameter on formaldehyde emission and technical properties of plywood. PhD thesis, KTU Graduate School of Natural and Applied Sciences, 21 p., Trabzon
  • Cui, T., Song, K., Zhang, S. 2010. Research on utilizing recycled plastic to make environment-friendly plywood. For. Stud. China, 12 (4), 218–222.
  • DIN 68705-3, 2003. Structure Plywood. German Standards Institute, Verlag.
  • Fang, L., Chang, L., Guo, W., Ren, Y., Wang, Z. 2013. Preparation and characterization of wood-plastic plywood bonded with high density polyethylene film. Eur. J. Wood Prod., 71, 739–746.
  • Frihart, C.R., 2005. Wood adhesion and adhesives. In: Rowell RM (ed) Handbook of wood Chemistry and Wood Composites. CRC, Florida, p. 225.
  • IARC., 2004. Overall evaluations on carcinogenicity to humans. In: As evaluated in IARC monographs, vol. 1. Lyon, France: International Agency for Research on Cancer.
  • Jianying, X., Tao, J., Yingyan, G., Min, Z., Xia, Z. 2010. Reduction of formaldehyde emission of wood-based panels. Bioinformatics and Biomedical Engineering (iCBBE), 2010 4th International Conference on (18-20 June), 1-3, Chengdu, Chine.
  • Kajaks, J., Reihmane, S., Grinbergs, U., Kalnins, K. 2012. Use of innovative environmentally friendly adhesives for wood veneer bonding. Proceedings of the Estonian Academy of Sciences, 61 (3), 207–211.
  • Kofi, A.O., 2014. Production of particle board using sawdust and plastic waste. Master Thesis, Kwame Nkrumah University of Science and Technology, Ghana.
  • Qian, X.Y., 2006. Development of the Chinese wood-based panel industry in the coming five years. China Wood Ind., 20 (2), 12–15.
  • Official Gazette., 2014. Ulusal geri dönüşüm strateji belgesi ve eylem planı 2014-2017, T.C. Bilim ve Sanayi ve Teknoloji Bakanlığı, Sanayi Genel Müdürlüğü, Ankara.
  • TS EN 310, 1999. Wood based panels. Determination of modulus of elasticity in bending and of bending strength. Turkish Standards Institute, Ankara.
  • TS EN 314-1, 1998. Plywood - Bonding quality - Part 1: Test methods. Turkish Standards Institute, Ankara.
  • TS EN 323-1, 1999. Wood- Based panels- Determination of density. Turkish Standards Institute, Ankara.