Dar Yayılışlı Endemik Jipsofitlerin Antimikrobiyal Aktiviteleri ile Mineral İçerikleri Arasındaki İlişki

Çalışmanın amacı: Bu çalışmada, ekstrem habitatlarda yetişen 7 dar yayılışlı endemik jipsofit bitki türünün antimikrobiyal aktiviteleri ile mineral içerikleri arasındaki ilişki araştırılmıştır. Ayrıca bu türlerin GC-MS analizleri de yapılmıştır. Materyal ve yöntem: Bu amaçla, disk difüzyon yöntemiyle 30, 45 ve 75 μL’lik metanol ve etil asetat ekstraktlarında 13 bakteri ve bir maya suşuna karşı antimikrobiyal aktivite ile toprak ve bitkideki makro ve mikro element konsantrasyonları belirlendi. Temel sonuçlar: Bu jipsofit bitkilerde güçlü bir antimikrobiyal etki potansiyeli olduğu ortaya konmuştur. Alınan tüm bitki türlerinde, makro elementlerden toplam Ca elementinin bitki gövdesinde diğer makro elementlere göre daha fazla biriktiği, ve mikro elementler arasında da en fazla Fe elementinin biriktiği belirlenmiştir. Ekstrem koşullara adapte olmuş jipsofilik bitki türlerinde tespit edilen güçlü antimikrobiyal aktivite ile Ca ve Fe içeriği arasında doğrusal bir ilişki olabileceği varsayılmıştır. Araştırma vurguları: Ekstramofil bitkiler, ilaç endüstrisinde antimikrobiyal ajanların geliştirilmesinde kullanılabilir.

The Relationship Between Antimicrobial Activities and Mineral Contents of Narrow Endemic Gypsophytes and Their Chemical Contents

Aim of study: In this study, the relationship between the antimicrobial activities and mineral contents of 7 narrow endemic gypsophyte plant species growing in extreme habitats was investigated. In addition, GC-MS analyzes of these species were also performed. Material and methods: For this purpose, macro and micro element concentrations in soil and plant and antimicrobial activity against 13 bacteria and one yeast strain were determined by disc diffusion method in 30, 45 and 75 μL methanol and ethyl acetate extracts. Main results: It has been presented that there is a strong antimicrobial effect potential in these gypsophyte plants. In all plant species taken, it was determined that the total Ca element among the macro elements accumulated more in the plant body than the other macro elements, and it was determined that Fe element accumulated the most among the micro elements. It was assumed that there might be a linear relationship between the strong antimicrobial activity detected in gypsophilic plant species adapted to extreme conditions and the Ca and Fe content. Highlights: Extramophiles plants could be used in the development of antimicrobial agents in pharmaceutical industry.

___

  • Albayrak, F., Ozdeniz, E., Kurt, L., Keles, Y. (2021). Variation of Phenolic and Pigment Composition Depending on Soil Type in Three Serpentinovag Plant Species. International Journal of Secondary Metabolite, 8(1), 1-10.
  • Alberdi, M., Bravo, A.L., Gutiérrez, A., Gidekel, M. & Corcuera, L.J. (2002). Ecophysiology of Antarctic vascular plants. Physiologia Plantarum, 115, 479-486.
  • Amtmann, A., Bohnert, H.J. & Bressan, R.A. (2005). Abiotic Stress and plant genome evolution search for new models. Plant Physiology, 138, 127-130.
  • Andrews, J. M. (2005). BSAC standardized disc susceptibility testing method (version 4), Journal of Antimicrobial Chemotherapy, 56(1), 60-76.
  • Benedek, B. & Kopp, B. (2007). Achillea millefolium L. s.l. revisited: Recent findings confirm the traditional use. Wien Med Wochensch, 157, 312-314.
  • Benli, M., Güney, K., Bingöl, Ü., Geven F. & Yiğit, N. (2007). Antimicrobial activity of some endemic plant species from Turkey. African Journal of Biotechnology, 6(15), 1774-1778.
  • Blonk, B. & Cock, I.E. (2019). Interactive antimicrobial and toxicity profiles of Pittosporum angustifolium Lodd. extracts with conventional antimicrobials. Journal of Integrative Medicine, 17, 261-272.
  • Bouzergoune, F., Bitam, F., Aberkane, M.C., Mosset, P., Fetha, M.N.H., Boudjar, H. & Aberkane, A. (2013). Preliminary Phytochemical and Antimicrobial Activity Investigations on The Aerial Parts of Helianthemum kahiricum. Chemistry of Natural Compounds, 49(4), 751-752.
  • Buruk, K., Sokmen, A., Aydin, F. & Erturk, M. (2006). Antimicrobial activity of some endemic plants growingin the Eastern Black Sea Region, Turkey. Fitoterapia. 77, 388-391.
  • Cartea, M.E., Francisco, M., Soengas, P. & Velasco, P. (2011). Phenolic compounds in Brassica vegetables. Molecules. 16, 251-280.
  • Chandra, S. & Rawat, D.S. (2015). Medicinal plants of the family Caryophyllaceae: a review of ethno-medicinal uses and pharmacological properties. Integrative Medicine Research, 4(3), 123-131.
  • Çekiç, F. Ö., Özdeniz, E., Öktem, M., Kurt, L. & Keleş, Y. (2018). The role of biochemical regulation on the adaptation of gypsophile and gypsovag species. Biochemical Systematics and Ecology, 81, 12-16.
  • Celik, A., Mercan, N., Arslan, I. & Davran, H. (2008). Chemical Composition And Antimicrobialactivity of Essential Oil From Nepeta cadmea. Chemistry of Natural Compounds. 44(1), 119-120.
  • Celik, A., Herken, E.N., Arslan, I., Ozel, M.Z., & Mercan, N. (2010). Screening of the constituents, antimicrobial and antioxidant activity of endemic Origanum hypericifolium O. Schwartz & P.H. Davis. Natural Product Research, 24(16), 1568- 1577.
  • Celik, A., Arslan, I., Herken, E.N. & Ermis, A. (2013). Constituents, Oxidant-Antioxidant Profile, and Antimicrobial Capacity of the Essential Oil Obtained from Ferulago sandrasica Peşmen and Quézel. International Journal of Food Properties, 16(8), 1655-1662.
  • Davis, P.H. (ed.) (1965-1988). Flora of Turkey and east Aegean Islands. Edinburgh Univ. Press.
  • Dulger, B. (2006). Antimicrobial Activity of Some Endemic Scrophulariaceae from Turkey. Pharmaceutical Biology, 44(9), 672-676.
  • Erbil, N., Düzgüner, V., Durmuşkahya, C. & Alan, Y. (2015). Antimicrobial and Antioxidant Effects of Some Turkish Fodder Plants Belongs to Fabaceae Family (Vicia villosa, Trifolium ochroleucum and Onobrychis altissima). Oriental Journal of Chemistry, 31(3), 1263-1268.
  • Erden, Y., Kirbag, S. & Yilmaz, K. (2013). Phytochemical Composition and Antioxidant Activity of Some Scorzonera Species. The Proceedings of the National Academy of Sciences, India, Section B: Biological Sciences, 83(2), 271-276.
  • Food and Agriculture Organization. (1990). Management of gypsiferous soils. FAO Soils Bulletin 62. Rome, Italy
  • Grigore, A., Colceru-Mihul, S., Bazdoaca, C., Yuksel, R., Ionita, C. & Glava, L. (2020). Antimicrobial Activity of an Achillea millefolium L., Proceedings. 57, 34.
  • Herken, E.N., Celik, A., Aslan, M. & Aydinlik, N. (2012). The constituents of essential oil: antimicrobial and antioxidant activity of Micromeria congesta Boiss. & Hausskn. ex Boiss. from East Anatolia. Journal of Medicinal Food, 15(9), 835- 839.
  • Hussien, Z.G. & Aziz, R.A. (2021). Chemical Composition and Antibacterial Activity of Linum usitatissimum L. Systematic Reviews in Pharmacy, 12(2), 145-147.
  • Hutchings, A. & Cock, I.E. (2018). An interactive antimicrobial activity of Embelica officinalis Gaertn. fruit extracts and conventional antibiotics against some bacterial triggers of autoimmune inflammatory diseases. Pharmacognosy Journal, 10(4), 654-62.
  • Imelouane, B., Tahri, M., Elbastrioui, M., Aouinti, F. & Elbachiri, A. (2011). Mineral contents of some medicinal and aromatic plants growing in eastern Morocco. Journal of Materials and Environmental Science, 2(2), 104-111.
  • Karaalp, C., Yurtman, A.N. & Karabay Yavasoglu, N.U. (2009). Evaluation of antimicrobial properties of Achillea L. flower head extracts. Pharmaceutical Biology, 47(1), 86-91.
  • Lindsay, W.L. & Norwell, W.A. (1978). Development of a DTPA Soil Test for Zinc, Iron, Manganese and Coppe. Soil Science Society of America Journal, 42, 421-428.
  • Mamadalieva, N.Z., Lafont, R. & Wink, M. (2014). Diversity of secondary metabolites in the genus Silene L. (Caryophyllaceae) structures distribution, and biological properties. Diversity. 6, 415-99.
  • Mummed, B., Abraha, A., Feyera, T., Nigusse, A. & Assefa, S. (2018). In Vitro Antibacterial Activity of Selected Medicinal Plants in the Traditional Treatment of Skin and Wound Infections in Eastern Ethiopia. BioMed Research International, 1-8.
  • Nono, N.R., Nzowa, K.L., Barboni, L. & Tapondjou, A.L. (2014). Drymaria cordata (Linn.) Willd (Caryophyllaceae): ethnobotany, pharmacology, and phytochemistry. Advances in Biological Chemistry. 4, 160-167.
  • Ocak, E., İnci, Ş., Öztürk, D., Akdeniz Şafak, S., Ozdeniz, E., Kırbağ, S., Evren, A.H. & Kurt, L. (2021). Antimicrobial Activities of Some Narrow Endemic Gypsopyhte. İstanbul Journal of Pharmacy, 51(1), 118-122.
  • Özdeniz, E., Bölükbaşı, A., Kurt, L. & Özbey, B.G. (2016). Jipsofil Bitkilerin Ekolojisi, Toprak Bilimi ve Bitki Besleme Dergisi. 4(2), 57-62.
  • Ozdeniz, E. (2019). The Role of Free Proline and Soluble Carbohydrates In Water Gypsum Stress On Some Gypsophyte And Gypsovag Plants. Planta Daninha,, 37, 1-7.
  • Özkan, O.E., Olgun, Ç., Guney, B., Gür, M., Güney, K. & Ateş, S. (2018). Chemical composition and antimicrobial activity of Myristica fragrans & Elettaria cardamomum essential oil. Kastamonu University Journal of Forestry Faculty, 18(2), 225-229.
  • Pratt, P.F. (1965). Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties, the American Society of Agronomy 9.2.
  • Salleh, W.M.N.H.W., Ahmad, F., Yen, K.H. & Sirat, H.M. (2011). Chemical compositions, antioxidant and antimicrobial activities of essential oils of Piper caninum Blume. International Journal of Molecular Sciences, 12, 7720-7731.
  • Servi, H., Eren Keskin, B., Yılancıoğlu, K. & Çelik, S. (2019). Essential oil composition and antibacterial activities of Gypsophila species. International Journal of Secondary Metabolite, 6(1), 20-27.
  • Sharma, A. & Arora, D. (2016). Phytochemical and pharmacological potential of genus Stellaria: a review. Journal of Research in Pharmacy, 5, 3591-6.
  • Tabanca, N., Demirci, B., Baser, K.H.C., Aytac, Z., Ekici, M., Khan, S.I., Jacob, M.R. & Wedge, D.E. (2006). Chemical composition and antifungal activity of Salvia macrochlamys and Salvia recognita essential oils. Journal of Agricultural and Food Chemistry, 54, 6593-6597.
  • Tozyılmaz, V., Bülbül, A.S. & Ceylan, Y. (2021). Determination of Antimicrobial, Antioxidant and Antibiofilm Activity of Some Alyssum L. Species in Anatolian Flora. KSÜ Tarım ve Doğa Dergisi. 24(4), 715-724.
  • Türker, H., Birinci Yıldırım, A., Pehlivan Karakaş, F. & Köylüoğlu, H. (2009). Antibacterial Activities of Extracts from Some Turkish Endemic Plants on Common Fish Pathogens. Turkish Journal of Biology, 33, 73-78.
  • Uzel, A., Dirmenci, T., Celik, A. & Arabaci, T. (2006). Composition and Antimicrobial Activity of Prangos platychlaena and P. uechtritzii. Chemistry of Natural Compounds. 42(2), 169-171.
  • Van Vuuren, S. & Viljoen, A. (2011). Plant-based antimicrobial studies—methods and approaches to study the interaction between natural products. Planta Medica, 77(11), 1168–82.
  • von Willert, D.J., Eller, B.M., Werger, M.J.A & Brinckmann, E. (1990). Desert succulents and their life strategies. Vegetatio. 90, 133-1
Kastamonu Üniversitesi Orman Fakültesi Dergisi-Cover
  • ISSN: 1303-2399
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2001
  • Yayıncı: Kastamonu Üniversitesi