VI B Grubu Elementlerinin Pentakarbonil(Merkaptopirimidin)Metal(0) Komplekslerinin Sentezi, Spektroskopik İncelemeleri, Termal Analizi ve DFT Hesapları

VIB metallerinin (M: Cr, Mo, W) pentakarbonil-N-merkaptopirimidinmetal(0) kompleksleri, hekzakarbonilmetal(0) kompleksleri 10 ºC'de 4,6-dimetil-2-merkaptopirimidin ligandı ile fotokimyasal olarak sentezlendi. Bildirilen organometalik kompleksler, inert atmosfer altında saflaştırılırılarak ve izole edili. Tüm M(CO)5L kompleksleri çözelti içinde FTIR-, 1H- ve 13C-NMR spektroskopileri ile karakterize edildi. FTIR spektroskopi sonuçları, karbonil bölgesinde, komplekslerin pentakarbonil metal biriminin yerel bir C4v simetrisine sahip olduğunu gösteren üç absorpsiyon bandı gösterdi. 1H- ve 13C-NMR spektroskopileri merkaptopirimidin ligandının, merkaptopirimidin-azot atomu yoluyla metal kompleksine simetrik olarak bağlandığını gösterdi. 13C-NMR spektroskopi sonuçları ayrıca CO-bölgesinde 1:4'lük bir oran gösterdi, bu oran komplekslerin C4v simetrisini kanıtladı. Bu organometalik komplekslerin termal davranışı DTA/TGA yöntemleri kullanılarak araştırılmıştır. Termal analizlerin sonuçları, komplekslerin üç farklı sıcaklıkta bozunduğunu göstermiştir. Yoğunluk fonksiyonel teorisi (DFT) hesaplamaları Gaussian03W Software ile B3PW91 formalizmi kullanılırak yapıldı. Deneysel çalışmaların verileri teorik değerlerle karşılaştırıldığında elde edilen sonuçların birbiri ile uyumlu olduğu görülmüştür. Böylece elde edilen organometalik kompleks bileşikleri için deneysel olarak verilen yapısal önermenin doğruluğu teorik olarak da desteklenmiştir.

Synthesis, Spectroscopic Investigations, Thermal Analysis and DFT Calculations of Some Pentacarbonyl(Mercaptopyrimidine) Metal(0) Complexes of Group VI B Elements

Pentacarbonyl-N-mercaptopyrimidinemetal(0) complexes of VIB metals (M: Cr, Mo, W) were formed when hexacarbonylmetal(0) complexes are treated photochemically with 4,6-dimethyl-2-mercaptopyrimidine at 10 ºC. The reported organometallic complexes were purified and isolated under an inert atmosphere. All M(CO)5L complexes were characterized in solution by FTIR-, 1H- and 13C-NMR spectroscopies. The FTIR spectroscopy results showed three absorption bands in the carbonyl region which indicates that the pentacarbonyl metal unit of the complexes has a local C4v symmetry. The 1H- and 13C-NMR spectroscopies showed that the mercaptopyrimidine ligand bonded to the metal complex through the mercaptopyrimidine-nitrogen atom symmetrically. The 13C-NMR spectroscopy results also showed a 1:4 ratio of two peaks in the CO-region, the ratio of the peaks proved the C4v symmetry of these complexes. The thermal behavior of these organometallic complexes is investigated by using DTA/TGA methods. The results of thermal analyses showed that the complexes decomposed at three different temperatures. The density functional theory (DFT) calculations were computed in B3PW91 formalism by Gaussian03W Software. The comparison of the experimental data with the theoretical values showed that the results obtained are compatible with each other. Thus, the accuracy of the experimentally given structural proposal of the obtained organometallic complex compounds was also confirmed through theoretical calculations.

___

  • Bhatt, V., (2016). Metal Carbonyls. Essentials of Coordination Chemistry, 1st ed. London, UK: Elsevier, 8: 191–236.
  • Turner, J.J., George, M.W., Poliakoff, M., and Perutz, R.N., (2022). Photochemistry of transition metal carbonyls. Chemical Society Reviews. 51: 5300-5329.
  • Bistoni, G., Rampino, S., Scafuri, N., Ciancaleoni, G., Zuccaccia, D., Belpassi, L., Tarantelli, F., (2016). How p back-donation quantitatively controls the CO stretching response in classical and non-classical metal carbonyl complexes. Chemical Science. 7(2): 1174-1184.
  • Mohamed, R.G., Elantabli, F. M., Helal, N. H., El-Medani, S. M., (2015). New group 6 metal carbonyl complexes with 4,5-dimethyl-N,Nbis(pyridine-2-yl-methylene)benzene-1,2-diimine Schiff base: Synthesis, spectral, cyclic voltammetry and biological activity studies. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 141: 316–326.
  • Erkan, S., Karakas, D., (2020). Computational investigation of structural, nonlinear optical and anti-tumor properties of dinuclear metal carbonyls bridged by pyridyl ligands with alkyne unit. Journal of Molecular Structure. 1199:127054.
  • Yaman, Ş.Ö., Esentürk, E., Kayran, C., and Önal, A.M., (2002). Spectroelectrochemical Investigation of Pentacarbonyl(pyrazine)metal(0) (Metal = Cr, Mo, W) Complexes of Group 6 Elements. Zeitschrift für Naturforschung. 57(1): 92-98.
  • Grevels, F. W., Jacke, J., and Ozkar, S., (1987). Photoreactions of Group 6 metal carbonyls with ethene: syntheses of trans-(.eta.2-ethene)2M(CO)4 (M = chromium, molybdenum, tungsten. Journal of the American Chemical Society. 109(24): 7536–7537.
  • Morkan, I. A., Güven, K., and Özkar, S., (2004). Pentacarbonyl(2,6-diaminopyridine)chromium(0): Synthesis and molecular structure. Journal of Organometallic Chemistry. 689(14): 2319–2323.
  • Tuç, C., Morkan, I. A., and Özkar, S., (2007). Synthesis and spectroscopic characterization of group 6 pentacarbonyl(4-substituted pyridine)metal(0) complexes. Transition Metal Chemistry. 32(6): 727–731.
  • Mashima, K., (1998) Group 4 (Ti, Zr, Hf) Metal Compounds. Synthesis of Organometallic Compounds, 1st ed. West Sussex, UK: John Wiley & Sons, Inc., ch. 6: 75-98.
  • Braterman, P.S., Harril, R.W., and Kaesz, H.D., (1967). Spectroscopic studies of isotopically substituted metal carbonyls. II. Assignment of carbonyl stretching absorptions and their interaction with metal-hydrogen stretching modes in pentacarbonyl hydrides. Journal of the American Chemical Society. 89(12): 2851–2855.
  • Crabtree, R. H., (2005). Carbonyls, Phosphines, And Substitution. The Organometallic Chemistry of The Transition Metals, 6th ed., Hoboken, New Jersey, USA, John Wiley, ch. 4(1): 98-108.
  • Akrivos, A. D., (2001). Recent studies in the coordination chemistry of heterocyclic thiones and thionates. Coordination Chemistry Reviews. 213(1): 181–210.
  • Dennenberg, R. J., and Darensbourg, D.J., (1972). Infrared and kinetic studies of Group VI metal pentacarbonyl amine compounds. Inorganic Chemistry,. 11(1): 72–77.
  • Schwenzer, G., Darensbourg, M.Y., and Darensbourg, D. J., (1972). Photochemical substitution reactions of substituted Group VI metal carbonyls. Inorganic Chemistry. 11(8): 1967–1970.
  • Darensbourg, D. J., Frost, B. J., Larkins, D. L., and Reibenspies, J. H., (2000). Organometallic Complexes of Uracil and Orotic Acid Derivatives: Coordination Mode, Structure, and Reactivity. European Journal of Inorganic Chemistry. 2000(12): 2487–2495.
  • Vielhaber, T., Faust, K., and Topf, C., (2020). Group 6 Metal Carbonyl Complexes Supported by a Bidentate PN Ligand: Syntheses, Characterization, and Catalytic Hydrogenation Activity. Organometallics. 39(24): 4535-4543.
  • Gonzales, M.A., Mascharak, P.K., (2014). Photoactive metal carbonyl complexes as potential agents for targeted CO delivery. Journal of Inorganic Biochemistry. 133: 127–135.
  • Taqui Khan, B., and Zakeeruddin, S.M., (1986). Metal complexes of substituted pyrimidines. Inorganica Chimica Acta. 124(1): 5–11.
  • Grigoryan, L.A., Kaldrikyan, M.A., Melik-Ogandzhanyan, R.G., Arsenyan, F.G., Stepanyan, G.M., and Garibdzhanyan, B.G., (2005). Synthesis and Antitumor Activity of 2-S-Substituted Pyrimidine Derivatives. Pharmaceutical Chemistry Journal. 39(9): 468–472.
  • Fandos, R., Lanfranchi, M., Otero, A., Pellinghelli, M., Ruiz, M. and Terreros, P., (1996). Zirconium Alkyl Thiolate Complexes:Synthesis and Reactivity.Molecular Structures of [Zr(Η5-C5H5)2(η2-C6H7N2S)(Me)]and[Zr(Η5-C5H5)2(Η1-C6H7N 2S). Organometallics. 15(22): 4725–4730.
  • Antiñolo, A., Carrillo-Hermosilla, F., Corrochano, A. E., Fandos, R., Fernández-Baeza, J., Rodríguez, A.M., Ruiz, M.J., and Otero, A., (1999). New Monocyclopentadienyl Complexes of Titanium(IV) and Zirconium(IV) with Chelating Pyrimidinethiolate, Oxypyrimidine, and Oxypyridine Ligands. Molecular Structure of [Zr(η5-C5Me5)(η2-O,N-ON2C6H7)3].Organometallics. 18(25): 5219–5224.
  • Martos-Calvente, R., De la Peña O’Shea, V.A., Campos-Martin, J.M., Fierro, J.L.G., (2003). The Usefulness of Density Functional Theory To Describe the Tautomeric Equilibrium of 4,6-Dimethyl-2-mercaptopyrimidine in Solution. The Journal of Physical Chemistry A. 107(38): 7490–7495.
  • Waheed, A., Alorainy, M.S., Alghasham, A.A., Khan, S.A., and Raza, M., (2008). Synthesis of a new series of substituted pyrimidines and its evaluation for antibacterial and antinociceptive effects. International Journal of Health Sciences. 2(1): 39–48.
  • Ajibade, P.A., and Idemudia, O.G., (2013). Synthesis, Characterization, and Antibacterial Studies of Pd(II) and Pt(II) Complexes of Some Diaminopyrimidine Derivatives. Bioinorganic Chemistry and Applications. 2013: 549549.
  • Creaser, C.S., Fey, M.A., and Stephenson, G.R., (1994). Environment sensitivity of IR-active metal carbonyl probe groups. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 50(7): 1295–1299.