AVLU YÖNÜ VE GENİŞLİĞİNİN BİNALARIN ENERJİ YÜKLERİNE ETKİSİNİN İNCELENMESİ

Her türlü enerji tüketimini azaltma ve rasyonelleştirme yönündeki küresel eğilime rağmen, Irak'ta yapı üretimi enerji etkinliği ile ilgili farkındalık olmadan devam etmektedir. Binalarda enerjinin korunması, küresel bir trend sorunu olarak Irak'taki hem siyasi hem de bilimsel programların en önemli konularından biri haline gelmelidir. Irak'ın artan nüfusu ve azalan fosil temelli enerji kaynakları binalarda enerji verimliliği için önemli katalizörler olarak ortaya çıkmmaktadır. Buna ek olarak maliyet verimliliği, karbon emisyonlarını azaltma ihtiyacı ve enerji tüketimine olan bağımlılığın azaltılması talebi enerji tasarrufu için temel nedenlerdir. Kullanım esnasında ortaya çıkan konforsuz iç mekanların ve yıl boyunca aşırı enerji kullanımının nedeni tasarımın erken aşamalarından itibaren dikkate alınmayan ısıl hesaplar ve buna bağlı olan parametrelerdir. Buradan hareketle Kerkük şehrinde binaların enerji verimliliğinin sağlanması, süregelen enerji krizi nedeniyle kritik öneme sahiptir. Bir yapı veya yapı grubunun ortasında yer alan üstü açık ve çevresi binanın kendisi ya da duvarlarla çevrili olan avlular geleneksel yerleşimlerden günümüz yapılarına kadar önemli bir mimari bileşen olmuştur. Bünyesinde bulunduğu binaların ihtiyaçlarına göre farklı fonksiyonlar üstlenen bu mimari unsurun bina fiziksel koşulları üzerinde de önemli etkileri bulunmaktadır. Bu çalışmanın amacı avlulu yapılarda avlu genişliği ve yönünün bina enerji yükleri üzerindeki etkisinin Kerkük iklimsel koşullarında araştırılmasıdır. Bu amaçla seçilen bir okul yapısının farklı senaryoları için enerji performansları benzetim yoluyla (Revit and green building studio) hesaplanmış olup sonuçlar karşılaştırmalı olarak değerlendirilmiştir. Bu sayede çalışmanın enerji etkin yapı tasarımı noktasında Kerkük/Irak yerleşimi için tasarımcılara yol gösterici olması hedeflenmiştir.

INVESTIGATION OF THE EFFECT OF COURTYARD DIRECTION AND WIDTH ON ENERGY LOADS OF BUILDINGS

Despite the global trend to reduce and rationalize all kinds of energy consumption, building production in Iraq continues without awareness of energy efficiency. Conservation of energy in the built environment should become one of the most important topics of both political and scientific programs in Iraq as a global trend issue. Iraq's growing population and declining fossil-based energy sources are emerging as important catalysts for energy efficiency in buildings. In addition, cost efficiency, the need to reduce carbon emissions, and the demand to reduce reliance on energy consumption are the main reasons for energy savings. The reason for the uncomfortable interiors that occur during use and excessive energy use throughout the year is the thermal calculations and related parameters that are not taken into account from the early stages of the design. From this point of view, ensuring the energy efficiency of buildings in the city of Kirkuk is of critical importance due to the ongoing energy crisis. Courtyards, which are open in the middle of a building or building group and surrounded by the building itself or the walls, have been an important architectural component from traditional settlements to today's buildings. This architectural element, which assumes different functions according to the needs of the buildings it is in, also has important effects on the physical conditions of the building. This study aims to investigate the effect of courtyard width and direction on building energy loads in the climatic conditions of Kirkuk in buildings with courtyards. For this purpose, the energy performances for different scenarios of a selected school building were calculated by simulation (Revit and green building studio) and the results were evaluated comparatively. In this way, it is aimed that the study will guide the designers for the Kirkuk/Iraq settlement at the point of energy-efficient building design.

___

  • Abanda, F.H. & Byers, L., 2016. "An investigation of the impact of building orientation on energy consumption in a domestic building using emerging BIM (Building Information Modelling)," Energy, Elsevier, vol. 97(C), pages 517-527.
  • Abass, F., Ismail, L. H. & Solla, M. (2016). A review of courtyard house: hıstory evolution forms, and functions. ARPN Journal of Engineering and Applied Sciences, 11(4); 2557-2563.
  • Acosta, I., Varela, C.; Molina, J. F.; Navarro, J. & Sendra, J. J. (2018). Energy efficiency and lighting design in courtyards and atriums: A predictive method for daylight factors. Applied Energy, 211; 1216-1228.
  • Abdulkareem, H. A. (2016). Thermal Comfort through the Microclimates of the Courtyard. A Critical Review of the Middle-eastern Courtyard House as a Climatic Response. Procedia - Social and Behavioral Sciences, 216; 662-674.
  • Allab, Y., Pellegrino, M., Guo, X., Nefzaoui, E. & Kindinis, A. (2017). Energy and comfort assessment in educational building: Case study in a French university campus. Energy and Buildings, 143, 202-219.
  • Alwetaishi, M., Alzaed, A., Sonetti, G., Shrahily, R. & Jalil, L. (2018). Investigation of school building microclimate using advanced energy equipment: Case study, Environmental Engineering Research, 23(1), 10–20.
  • Asfour, O. S. (2020). A comparison between the daylighting and energy performance of courtyard and atrium buildings considering the hot climate of Saudi Arabia. Journal of Building Engineering, 30: 101299.
  • BRE. (2009). “BRE Environmental & Sustainability Standard,” BREEAM Court., no. 3: 368.
  • Chi, F., Xu, Y. & Pan, J. (2022). Impact of shading systems with various type-number configuration combinations on energy consumption in traditional dwelling (China). Energy, 255: 124520.
  • Chi, F., Xu, L. & Peng, C. (2020). Integration of completely passive cooling and heating systems with daylighting function into courtyard building towards energy saving. Applied Energy, 266:114865.
  • Estidama sustainable buildings and communities and buildings program for the emirate of Abu Dhabi- design guidelines for new residential and commercial buildings; May 2008.
  • Gil-Baez M., Barrios-Padura A., Molina-Huelva M. & Chacartegui R. (2017). Natural ventilation systems in 21 st-century for near zero energy school buildings. International Conference on Advances in Energy Systems and Environmental Engineering (ASEE17), 1187, Wrocław, Poland.
  • Herrmann, H. & Bucksch, H. (2014). Mining subsidence Dictionary Geotechnical Engineering/Wörterbuch GeoTechnik, Springer Berlin Heidelberg, 879–879.
  • Heydari, A., Sadati, S. E. & Gharib, M. R. (2021). Effects of different window configurations on energy consumption in building: Optimization and economic analysis. Journal of Building Engineering, 35: 102099.
  • Karaca, U. B. (2022). A study on the improvement of indoor air quality in primary school classrooms. European Journal of Science and Technology, 33: 60-67.
  • Kürekci, N.A. & Kaplan, S. (2014). Isıtma-soğutma yüklerinin HAP ve Revit Programlarıyla Hesaplanması. Tesisat Mühendisliği Dergisi, 141: 5-15.
  • Liao, W., Wen, C.; Luo, Y.; Peng, J. & Li, N. (2022). Influence of different building transparent envelopes on energy consumption and thermal environment of radiant ceiling heating and cooling systems. Energy & Buildings, 255: 111702.
  • Ministry of Housing and Construction, Ministry of Planning, 2013 Building Code of Iraq: Thermal Insulation Code, (PO Box 501), First Edition.
  • Marwan, M. (2020). The effect of wall material on energy cost reduction in building. Case Studies in Thermal Engineering, 17: 100573.
  • Mushtaha, E., Salameh, T.; Kharrufa, S.; Mori, T.; Aldawoud, A.; Hamad, R. & Nemer, T. (2021). The impact of passive design strategies on cooling loads of buildings in temperate climate. Case Studies in Thermal Engineering, 28: 101588.
  • Najib, S. H. (2019). A proposal for an energy-efficient school building modelin Kirkuk/Iraq. Msc Thesis. Fırat University Graduate School of Natural and Applied Sciences, Elazığ.
  • N. Harmati N. & Magyar, Z. (2015). Influence of WWR, WG and glazing properties on the annual heating and cooling energy demand in buildings,” Energy Procedia, 78: 2458–2463.
  • Ouf, MM. & Issa, MH. (2017). Energy consumption analysis of school buildings in Manitoba, Canada, International Journal of Sustainable Built Environment, 6: 359–371.
  • Pajek, L.; Potocnik, J. & Kosir, M. (2022). The effect of a warming climate on the relevance of passive design measures for heating and cooling of European single-family detached buildings. Energy & Buildings, 261: 111947.
  • Sánchez de la Flor, F. J., Ruiz-Pardo, Á., Diz-Mellado, E., Rivera-Gómez, C. & Galán-Marín, C. (2021). Assessing the impact of courtyards in cooling energy demand in buildings. J. Clean. Prod., 320: 128742. Tabesh, T. & Sertyesilisik, B. (2015). An Investigation on Energy Efficient Courtyard Design Criteria. International Conference on Chemical, Civil and Environmental Engineering (CCEE-2015) Proceeding Book: 60-65, Istanbul (Turkey).
  • Yacine Allab, Y.. Pellegrino, M.; Guo, X.; Nefzaoui, E. & Kindinis, A. (2017). Energy and comfort assessment in educational building: Case study in a French university campus. Energy and Buildings, 143: 202-219.
  • URL-1 . https://www.scribd.com/doc/300504188/Syrian-Insulation-Code. Accessed: 24.10.2022.