Kentsel Hava Hareketliliği Kavramının Gelişiminde İki Önemli Faktör: ATM ve Toplum

Bir metropol bölgesinde insanlı veya insansız hava araçlarıyla emniyetli ve etkin hava trafik operasyonlarının yürütülmesini ifade eden kentsel hava hareketliliği (UAM) kavramı son yıllarda havacılık endüstrisi tarafından sürekli olarak araştırılmaktadır. Dünyada nüfusun kentlere kayması sonucunda kara trafiğinde meydana gelebilecek tıkanıklıklara çözüm olması ön görülen UAM kavramı hava araçları teknolojisindeki gelişme ve havacılık kavramlarının da belli bir olgunluğa erişmesiyle ön plana çıkmaktadır. NASA, FAA, Airbus, EASA, EUROCONTROL gibi havacılık endüstrisinin önde gelen kuruluşları tarafından proje çalışmaları yürütülen UAM sisteminin, 2035 yılında 23.000 hava aracı ile 60 milyar euroluk bir pazara sahip olması öngörülmektedir. Bu çalışmada, öncelikle UAM kavramının geçmiş ve günümüzdeki süreci incelenerek geleneksel havacılık açısından bir bakış sağlanmakta, sonrasında sistemin hava sahası ve kentlerdeki ulaşım ağına entegrasyonuna yönelik en önemli iki faktör olan hava trafik yönetimi (ATM) ve toplum kabulü boyutunda değerlendirmeler yapılarak karşılaşabileceği zorluklara ilişkin çözümler tartışılmaktadır.

___

  • Airbus (2021a). A New Digital Era of Aviation: The Path Forward for Airspace and Traffic Management https://www.airbusutm.com/a-new-digital-era (22.05.2021).
  • Airbus (2021b). Urban air mobility: safe, sustainable and convenient, https://www.airbus.com/innovation/zero-emission/urban-air-mobility.html (22.05.2021).
  • Airbus (2021c). Urban Air Mobility: on the path to public acceptance https://www.airbus.com/newsroom/news/en/2019/02/urban-air-mobility-on-the-path-to- public-acceptance.html (22.05.2021).
  • Austria Airservices (2021). Urban Air Traffic Management Concept of Operations https://engage.airservicesaustralia.com/urban-air-traffic-management-concept-of-operations (22.05.2021).
  • Baptista, P., Melo, S., Rolim, C. (2014). Energy, environmental and mobility impacts of car-sharing systems. empirical results from lisbon, portugal. Proc.-Soc. Behav. Sci. 111, 28–37.
  • Bimbraw, K. (2015). Autonomous cars: Past, present and future a review of the developments in the last century, the present scenario and the expected future of autonomous vehicle technology. In: Informatics in Control, Automation and Robotics (ICINCO), 2015 12th International Conference on, vol. 1. IEEE, pp. 191–198.
  • Chan, W. N., Barmore, B., Kibler, J., Lee, P. U., O'Connor, N., Palopo, K., ... & Zelinski, S. (2018). Overview of NASA’s ATM-X Project. In 2018 Aviation Technology, Integration, and Operations Conference (p. 3363).
  • CORUS-XUAM (2021). Need for a harmonised approach for the integration of UAM into the airspace https://corus-xuam.eu/ (22.05.2021).
  • Cotton, W. B., & Wing, D. J. (2018). Airborne trajectory management for urban air mobility. In 2018 Aviation Technology, Integration, and Operations Conference (p. 3674).
  • Devlet Hava Meydanları İşletmesi Genel Müdürlüğü (DHMİ) (2021). Uçuş Öncesi Bilgi Bülteni, https://ead.dhmi.gov.tr/ (30.04.2021)
  • European Union Aviation Safety Agency EASA (2021a). Drones: Commission adopts new rules and conditions https://ec.europa.eu/transport/modes/air/news/2021-04-22-drones_en (30.04.2021).
  • European Union Aviation Safety Agency (EASA) (2021b), Study on the societal acceptance of UAM operations across the European Union May 19,2021 https://www.easa.europa.eu/sites/default/files/dfu/uam-full-report.pdf (22.05.2021).
  • Edwards, T. E., Verma, S., & Keeler, J. (2019). Exploring human factors issues for urban air mobility operations. In AIAA Aviation 2019 Forum (p. 3629).
  • Embrear (2021a). EmbraerX and Airservices Australia release Concept of Operations for Urban Air Mobility, https://embraer.com/global/en/news?slug=1206815-embraerx-and-airservices-australia-release-concept-of-operations-for-urban-air-mobility (22.05.2021).
  • EmbrearX (2021a). Flight Plan 2030, https://daflwcl3bnxyt.cloudfront.net/m/72d6ed98a71cb43f/original/200702_AF_EMBX_White_Paper_DM.pdf (22.05.2021).
  • EmbrearX (2021b). UATM - Concept of Operations - Design_D11 – FINAL https://embraerx.embraer.com/global/en/uatm (22.05.2021).
  • Fedaral Aviation Administration (FAA) (2021), Airspace 101- Rules of the sky https://www.faa.gov/uas/recreational_fliers/where_can_i_fly/airspace_101/ (22.05.2021).
  • International Air Transport Association (IATA) (2021). 20 year passenger forecast https://www.iata.org/pax-forecast/ (22.05.2021).
  • International Civil Aviation Organization (ICAO) (2016). Annex 19 Safety Management 2nd Edition July 2016.
  • International Civil Aviation Organization (ICAO) (2018a). Annex 11 Air Traffic Services 11th Edition July 2018 Amend.52.
  • International Civil Aviation Organization (ICAO) (2018b). Annex 16 Environmental Protection Volume I - Aircraft Noise 8th Edition July 2017 Amend.13.
  • Lascara, B., Lacher, A., DeGarmo, M., Maroney, D., Niles, R., & Vempati, L. (2019). Urban Air Mobility Airspace Integration Concepts: Operational Concepts and Exploration Approachs. MITRE CORP MCLEAN VA MCLEAN.
  • Moore, M. D. (2010). “Aviation Frontiers–On Demand Aircraft” 10th AIAA Aviation Technology, Integration, and Operations Conference, AIAA Paper 2010-9343, 2010. doi: 10.2514/6.2010-9343.
  • Mueller, E. R., Kopardekar, P. H., & Goodrich, K. H. (2017). Enabling airspace integration for high-density on-demand mobility operations. In 17th AIAA Aviation Technology, Integration, and Operations Conference (p. 3086).
  • NASA (2021). UAS Traffic Management (UTM) Project, https://www.nasa.gov/utm (22.05.2021).
  • NATS Aeronautical Information Service (2021). UAS Airspace Restrictions, http://www.nats-uk.ead-it.com/public/index.php%3Foption=com_content&task=blogcategory&id=255&Itemid=466.html (22.05.2021).
  • Postorino, M. N., & Sarné, G. M. (2020). Reinventing mobility paradigms: Flying car scenarios and challenges for urban mobility. Sustainability, 12(9), 3581.
  • Ravich, T. M. (2019). On-Demand Aviation: Governance Challenges of Urban Air Mobility (" UAM"). Penn St. L. Rev., 124, 657.
  • SESAR Joint Undertaking (SESAR JU) (2021). Europe-wide urban air mobility demonstrations get off the ground in bid for greener future, https://www.sesarju.eu/news/europe-wide-urban-air-mobility-demonstrations-get-ground-bid-greener-future (22.05.2021).
  • Thipphavong, D. P., Apaza, R., Barmore, B., Battiste, V., Burian, B., Dao, Q., ... & Verma, S. A. (2018). Urban air mobility airspace integration concepts and considerations. In 2018 Aviation Technology, Integration, and Operations Conference (p. 3676).
  • UBER (2020). The future of air mobility https://www.uber.com/us/en/elevate/ (22.05.2021).
  • Vascik, P. D., Hansman, R. J., & Dunn, N. S. (2018). Analysis of urban air mobility operational constraints. Journal of Air Transportation, 26(4), 133-146.
  • Vascik, P. D., Balakrishnan, H., & Hansman, R. J. (2018). Assessment of air traffic control for urban air mobility and unmanned systems.
  • Vascik, P. D., & Hansman, R. J. (2018). Scaling constraints for urban air mobility operations: air traffic control, ground infrastructure, and noise. In 2018 Aviation Technology, Integration, and Operations Conference (p. 3849).
  • Wang, Y., Xia, H., Yao, Y., & Huang, Y. (2016). Flying eyes and hidden controllers: A qualitative study of people’s privacy perceptions of civilian drones in the US. Proceedings on Privacy Enhancing Technologies, 2016(3), 172-190.
  • Worldmeters (2021). World Population Forecast (2020-2050) https://www.worldometers.info/world-population/ (23.04.2021).