Elektrikli Araçlar için MTPA Kontrol Stratejisi ile Alan Yönlendirmeli Kontrol Tasarımı

Sürekli mıknatıslı senkron motorlar (SMSM); yüksek güç yoğunluğu, yüksek verim, hızlı tepki süresi ve lineer moment karakteristiği gibi özellikleriyle yüksek performans gerektiren elektrikli araç uygulamalarında oldukça geniş yer bulmaktadır. Elektrikli araçlar uygulamalarında, sürüş menzilinin ve dolayısıyla enerji veriminin en kritik konu olması nedeniyle sistemdeki enerji veriminin arttırılması büyük önem taşımaktadır. Bu çalışmada SMSM’nin Akım Başına Maksimum Moment (Maximum Torque Per Ampere, (MTPA)) stratejisi ile alan yönlendirme kontrolü gerçekleştirilmiştir. Bu kontrol yöntemiyle motorun, talep edilen elektromanyetik momenti minimum akımla üretmesi hedeflenmiş ve enerji verimine etkisi incelenmiştir. Daha sonra gerçekleştirilen MTPA kontrol stratejisi ile alan yönlendirme kontrolü, geleneksel alan yönlendirme kontrolü ile karşılaştırılmış ve elde edilen simülasyon sonuçları detaylı olarak verilmiştir.

Field Oriented Control with MTPA Control Strategy for Electric Vehicles

Permanent magnet synchronous motors (PMSM); With its features such as high power density, high efficiency, fast response time and linear torque characteristics, it finds a wide place in electric vehicle applications that require high performance. In the application of electric vehicles, it is of great importance to increase the energy efficiency of the system, since the driving range and therefore energy efficiency is the most critical issue. In this study, field oriented control was performed with the maximum torque per ampere (MTPA) strategy of the SMSM. With this control method, it is aimed for the motor to produce the requested electromagnetic moment with minimum current and its effect on energy efficiency is shown. The implemented the field oriented control with MTPA control strategy are compared with the traditional field oriented control and the simulation results are presented.

___

  • Anh H.P.H., Kien C.V., Huan T.T., Khanh P.Q., Advanced Speed Control of PMSM Motor Using Neural FOC Method, In: 4th International Conference on Green Technology and Sustainable Development, 2018, Ho Chi Minh City.
  • Giri F., AC Electric Motors Control: Advanced Design Techniques and Applications, Wiley, (2013).
  • Jina N., Wangb X., Gaoc H., Liud J., Sliding Mode Based Speed Regulating of PMSM MTPA Control System for Electrical Vehicles, In: International Conference on Electronic & Mechanical Engineering and Information Technology, 2011, Harbin.
  • Korkmaz F., Topaloğlu İ., Çakır M.F., Gürbüz R., Comparative Performance Evaluation of FOC and DTC Controlled PMSM Drives, In: 4th International Conference on Power Engineering, Energy and Electrical Drives, 2013, İstanbul.
  • Li H., Qian Y., Asgarpoor S., Bradley J., PMSM Current Management with Overcurrent Regulation, In: IEEE Applied Power Electronics Conference and Exposition, 2019, Anaheim.
  • Özpineci B., Oak Ridge National Laboratory Annual Progress Report for the Electric Drive Technologies Program, Oak Ridge National Lab., Oak Ridge, (2015).
  • Rabiei A., Thiringer T., Alatalo M., Grunditz E.A., Improved Maximum-Torque-Per-Ampere Algorithm Accounting for Core Saturation, Cross-Coupling Effect, and Temperature for a PMSM Intended for Vehicular Applications, IEEE Transactions on Transportation Electrification, Vol. 2, No. 2, pp. 150-159, (2016).
  • Ren W., Wu Y., Du R., A Vector Control System of PMSM with the Assistance of Fuzzy PID Controller, In: Chinese Control Conference, 2020, Shenyang.
  • Torrent M., Perat J.I., Jiménez J.A., Permanent Magnet Synchronous Motor with Different Rotor Structures for Traction Motor in High Speed Trains, Energies, Vol. 11, No. 1549, pp. 1-17, (2018).
  • Yang S., Liu K., Hu Y., Chu L., Chen S., Efficiency Optimization Control of IPMSM Considering Varying Machine Parameters, In: IEEE Student Conference on Electric Machines and Systems, 2018, Huzhou.
  • Zhu Z.Q., Chan C.C., Electrical Machine Topologies and Technologies for Electric, Hybrid, and Fuel Cell Vehicles, In: IEEE Vehicle Power and Propulsion Conference, 2008, Harbin.