Z2 ×Z2 Üzerinde Sıfırlanan Polinomların İdealinin Açık Gröbner Tabanı

Sıfırlanan polinomlar, katsayı halkası üzerinde tanımlanan polinom halkalarının bir idealini oluştururlar. Bu makalede (m,l)≠1 olmak üzere Z Z m l # 6x x 1 2 , , ..., x n@ polinom halkasının bazı sıfırlanan polinomlarını ve Z Z 2 2 # [x] halkasının sıfırlanan polinomlarının idealinin açık minimal güçlü Gröbner tabanını vereceğiz. İspatımız tamamen kobinasyonel yönteme dayalı olacaktır.

Explicit Gröbner Basis of the Ideal of Vanishing Polynomials over Z2 ×Z2

Vanishing polynomials form an ideal of polynomial ring over the coefficient ring. In this paper, we give some vanishing polynomialsof the polynomial ring Z Z m l # 6x x 1 2 , , ..., x n@ where (m,l)≠1 and an explicit minimal strong Gröbner basis of the ideal of vanishingpolynomials of the ring Z Z 2 2 # [x]. Our proof is based fully on a combinatorial way

___

  • Aoki, S., Hibi, T., Ohsugi, H., Takemura, A. 2010. Markov basis and Gröbner basis of Segre– Veronese configuration for testing independence in group-wise selections. Ann. Inst. Stat. Math., 62: 299– 321.
  • Buchberger, B. 1965. An algorithm for finding the bases elements of the residue class ring modulo a zero dimensional polynomial ideal, PhD thesis, Univ. of Innsbruck (Austria), 36 pp.
  • Conti, P., Traverso, C. 1991. Buchberger algorithm and integer progamming, In: Mattson, H., Mora, T., Rao, T. [eds.], Applied Algebra Algebraic Algorithms and Error Correcting Codes. Lecture Notes in Computer Science, Springer, Berlin, vol. 539, pp. 130-139.
  • De Loera, Jesús A. 1995. Gröbner bases and graph colorings. Beiträge Algebra Geom., 1995: 36 (1): 89-96.
  • Grayson, DR., Stillman, ME. 01 August 2016. Macaulay 2, a software system for research in algebraic geometry. http:// www.math.uiuc.edu/Macaulay2/
  • Greuel, GM., Seelisch, F., Wienand, O. 2011. The Gröbner basis of the ideal of vanishing polynomials. J. Symbolic Comput., 46: 561-570.
  • Greuel, GM., Wedler, M., Wienand, O., Brickenstein, M., Dreyer, A. 2008. New developments in the theory of Groebner bases and applications to formal verification. J. Pure Appl. Algebra, 213(8): 1612-1635.
  • Hironaka, H. 1964. Resolution of singularities of an algebraic variety over a field of characteristic zero. Ann. Math., 79: 109– 203.
  • Macaulay, F.S. 1927. Some properties of enumeration in the theory of modular systems. Proc. London Math. Soc., 26: 531- 555.
  • Shekhar, N., Kalla, P., Enescu, F., Gopalakrishnan, S. 2005. Equivalence verification of polynomial datapaths with fixedsize bitvectors using finite ring algebra. In the proceedings of the 2005 IEEE/ACM International Conference on Computeraided Design, pp: 291– 296.
  • Sturmfels, B. 1996. Gröbner Bases and Convex Polytopes, Amer. Math. Soc., Providence, 162 pp.
  • Wienand, O., Wedler, M., Stoffel, D., Kunz, W., Greuel, GM. 2008. An algebraic approach for proving data correctness in arithmetic data paths. In the proceedings of the 20th International Conference on Computer Aided Verification, pp: 473– 486.