Yeni İyi Çözünür ve Agregasyon Yapmayan Bakır(II) ve Kalay(II) MetallibFtalosiyaninler: Sentez, Karakterizasyon ve Fotofiziksel ve Fotokimyasal Duyarlılığın Araştırılması

Bu çalışma, non-periferal (alfa-) ve periferal (beta-) pozisyonlarda 2,6-dimetoksi gruplarıyla sübstitüe edilen agrege olmayan oldukça çözünür bakır(II) ve kalay(II) metalli ftalosiyanin bileşiklerinin sentezini ve karakterizasyonunu sunar. Bu ftalosiyaninler bilinen spektroskopik tekniklerle karakterize edilmiştir. Dimetilsülfoksit, dimetilformamit, tetrahidrofuran, toluen, asetonitril, kloroform ve diklorometan gibi bilinen organik çözücülerde mükemmel çözünürlük ve agregasyon yapamayan türler göstermiştir. Orijinal ftalosiyanin bileşiklerinin yüksek çözünürlük özellikleri ve agregasyon yapmayan türler içermesi onları bilim ve teknolojinin farklı alanlarında pek çok uygulamalarda kullanılmaları amacıyla aday yapar. Bu orjinal ftalosiyaninlerin spektroskopik özellikleri hakkında üstte bahsedilen farklı çözeltilerde ftalosiyanin merkezindeki farklı metal iyonlarının ve ftalosiyanin iskeleti üzerinde sübstitüentin pozisyon etkileri ve agregasyon özellikleri belirlenmiştir. Ayrıca, bileşiklerin dimetilsülfokit çözeltisinde farklı konsantrasyonlardaki agregasyon özellikleri de incelenmiştir. Yeni sentezlenen bakır metalli ftalosiyaninler, ftalosiyanin çekirdeğinde merkez metalinin paramagnetik davranışı ve geçiş metalinden dolayı floresans, fotofiziksel ve fotokimyasal özellikleri değerlendirilmedi. Alfa ve betasübstitüentli kalay(II) metalli orijinal ftalosiyanin bileşiklerinin fotofiziksel (floresans kuantum verimleri ve ömürleri) ve fotokimyasal özellikleri (singlet oksijen kuantum verimleri, fotobozunma kuantum verimleri) hakkında ftalosiyanin iskeleti üzerindeki sübstitüent ve sübstitüentin pozisyonlarının etkileri de ilk defa bu çalışmada incelenmiş ve rapor edilmiştir.

Newly Soluble and Non-Aggregated Copper(II) and Tin(II) Phthalocyanines: Synthesis, Characterization and Investigation of Photophysical and Photochemical-Responsive

This work presents the synthesis and characterization of non-aggregated and highly soluble copper(II) and tin(II) phthalocyaninessubstituted with 2,6-dimethoxyphenoxy groups at the non-peripheral (alpha) and peripheral (beta) positions. The phthalocyanines havebeen characterized by common spectroscopic techniques. They show excellent solubility and non-aggregated species in common organicsolvents such as dimethylsulfoxide, dimethylformamide, tetrahydrofuran, toluene, acetonitrile, chloroform and dichloromethane, whichmake them candidates to use for many applications in different fields of science and technology. The effects positions of substituenton the phthalocyanine skeleton and the variety of central metal ions on the phthalocyanine of aggregation and on their spectroscopicproperties were determined in different solvents as mentioned above. The novel synthesized copper phthalocyanines were not evaluatedfor fluorescence, photophysical and photochemical properties due to transition metal and paramagnetic behavior of central metalin the phthalocyanine cavity. The effects of substituent and their positions on the tin(II) phthalocyanines’ on their photophysical(fluorescence quantum yields and lifetimes) and photochemical properties (singlet oxygen generation and photodegradation underlight irradiation) were also investigated and reported in dimethylsulfoxide for the first time.

___

  • Akçay, HT., Pişkin, M., Demirbaş, Ü., Bayrak, R., Durmuş, M., Menteşe, E., Kantekin, H. 2013. Novel triazole bearing zinc(II) and magnesium(II) metallo-phthalocyanines: Synthesis, characterization, photophysical and photochemical properties, J. Organomet. Chem. 2013, 745(746): 379-386.
  • Aktaş, A., Pişkin, M., Durmuş, M., Bıyıklıoğlu, Z. 2014. Synthesis, photophysical and photochemical properties of zinc phthalocyanines bearing fluoro-functionalized substituents. J. Lumin., 145: 899-906.
  • Al-Sohaimi, BR., Pişkin, M., Ghanem, BS., Al-Raqa, SY., Durmuş, M. 2016. Efficient singlet oxygen generation by triptycene substituted A3 B type zinc(II) phthalocyanine photosensitizers. Tetrahedron Lett., 57 (3): 300-304.
  • Al-Sohaimi, BR., Pişkin, M., Ghanem, BS., Al-Raqa, SY., Durmuş, M. 2016. Enhancing photophysical and photochemical properties of zinc(II) phthalocyanine dyes by substitution of triptycene moieties. J. Lumin., 173: 82-88.
  • Alamin Ali, HE., Pişkin, M., Altun, S., Durmuş, M., Odabaş, Z. 2016. Synthesis, characterization, photophysical, and photochemical properties of novel zinc(II) and indium(III) phthalocyanines containing 2-phenylphenoxy units. J. Lumin., 173: 113-119.
  • Anderson, AB., Gorden, TL., Kenney, ME. 1985. Electronic and redox properties of stacked-ring silicon phthalocyanines from molecular orbital theory. J. Am. Chem. Soc., 107: 192-195.
  • Bayrak, R., Akçay, HT., Pişkin, M., Durmuş, M., Değirmencioğlu, İ. 2012. Azine-bridged binuclear metallophthalocyanines functioning photophysical and photochemical-responsive. Dyes Pigm., 2012; 95: 330-337.
  • Bohrer, FI., Sharoni, A., Colesniuc, C., Park, J., Schuller, IK., Kummel, AC., Trogler, WC. 2007. Gas sensing mechanism in chemiresistive cobalt and metal-free phthalocyanine thin films. J. Am. Chem. Soc, 129 (17): 5640-5646.
  • Çakır, V., Çakır, D., Pişkin, M., Durmuş, M., Bıyıklıoğlu, Z. 2014. Water soluble peripheral and non-peripheral tetrasubstituted zinc phthalocyanines: Synthesis, photochemistry and bovine serum albumin binding behavior. J. Lumin., 154: 274-284.
  • Çakır, V., Çakır, D., Pişkin, M., Durmuş, M., Bıyıklıoğlu, Z. 2015. New peripherally and non- peripherally tetra-substituted water soluble zinc phthalocyanines: Synthesis, photophysics and photochemistry. J. Organomet. Chem., 783: 120-129.
  • Camerin, M., Magaraggia, M., Soncin, M., Jori, G., Moreno, M., Chambrier, I., Cook, MJ., Russell, DA. 2010. The in vivo efficacy of phthalocyanine-nanoparticle conjugates for the photodynamic therapy of amelanotic melanoma. Eur. J. Cancer., 46: 1910-1918.
  • Cicoira, F., Coppede, N., Iannotta, S., Martel, R. 2011. Ambipolar copper phthalocyanine transistors with carbon nanotube array electrodes. Appl. Phys. Lett., 98 (18): 183303- 183305.
  • Demirbaş, Ü., Bayrak, R., Pişkin, M., Akçay, H.T., Durmuş, M., Kantekin, H. 2013. Synthesis, photophysical and photochemical properties of novel tetra substituted metal free and metallophthalocyanines bearing triazine units. J. Organomet. Chem., 724: 225-234.
  • Durmuş, M., Nyokong, T. 2007. The synthesis, fluorescence behaviour and singlet oxygen studies of new water-soluble cationic gallium (III) phthalocyanines. Inorg. Chem. Commun., 10: 332-338.
  • Ghanem, BS., Pişkin, M., Durmuş, M., El-Khouly, M.E., AlRaqa, SY. 2015. Synthesis, photophysical and photochemical properties of novel phthalocyanines substituted with triptycene moieties. Polyhedron, 90: 85-90.
  • Göl, C., Durmuş, M. 2012. Investigation of photophysical, photochemical and bovine serum albumin binding properties of novel water-soluble zwitterionic zinc phthalocyanine complexes. Synthetic Met.,162: 605-613.
  • Gürel E., Pişkin M., Altun S., Odabaş Z., Durmuş M. 2015. Synthesis, characterization and investigation of the photophysical and photochemical properties of highly soluble novel metal-free, zinc(II), and indium(III) phthalocyanines substituted with 2,3,6-trimethylphenoxy moieties. Dalton Transactions, 44: 6202–6211.
  • Gürel, E., Pişkin, M., Altun, S., Odabaş, Z., Durmuş, M. 2016. The novel mesityloxy substituted metallo-phthalocyanine dyes with long fluorescence lifetimes and high singlet oxygen quantum yields. J. Photochem. Photobiol. A., 315: 42–51.
  • Gürol, İ., Durmuş¸ M., Ahsen, V., Nyokong, T. 2007. Synthesis, photophysical and photochemical properties of substituted zinc phthalocyanines. Dalton Trans., 34: 3782-3791.
  • Idowu, M., Nyokong, T. 2008. Synthesis, photophysics and photochemistry of tin(IV) phthalocyanine derivatives. J. Photochem. Photobiol. A., 199: 282–290.
  • Ince, M., Martínez-Díaz, MV. Barber, J., Torres, T. 2011. Liquid Crystalline Phthalocyanine-Fullerene Dyads. J. Mater. Chem., 21: 1531-1536.
  • Jiang XJ., Huang JD., Zhu YJ., Tang FX., Ng DKP., Sun JC. 2006. Preparation and in vitro photodynamic activities of novel axially substituted silicon (IV) phthalocyanines and their bovine serum albumin conjugates. Bioorg. Med. Chem. Lett., 16: 2450-2453.
  • Kobayashi N., Ogata, H., Nonaka, N., Luk’yanets, EA. 2003. Effect of peripheral substitution on the electronic absorption and fluorescence spectra of metal-free and zinc phthalocyanines. Chem. Eur. J. 9: 5123-5134.
  • Kobayashi, N., Fukuda, T., Ueno, K., Ogino, H. 2001. Extremely Non-Planar Phthalocyanines with Saddle or Helical Conformation: Synthesis and Structural Characterizations. J. Am. Chem. Soc., 123: 10740–10741.
  • Kulaç, D., Bulut, M., Altındal, A., Özkaya, AR., Salih, B., Bekaroğlu, Ö. 2007. Synthesis and characterization of novel 4-nitro-2-(octyloxy)phenoxy substituted symmetrical and unsymmetrical Zn(II), Co(II) and Lu(III) phthalocyanines. Polyhedron, 26: 5432-5440.
  • Leznoff, CC., Lever, ABP. 1989. Phthalocyanines, Properties and Applications Vol.1, Wiley–VCH, New York, pp-341–392.
  • Leznoff, CC., Lever, ABP. 1993. Phthalocyanines, Properties and Applications Vol.3, Wiley–VCH, New York, pp-119–167.
  • Leznoff, CC., Lever, ABP. 1996. Phthalocyanines, Properties and Applications Vol.4, Wiley–VCH, New York, pp-79–181.
  • Lokesh, KS., Uma, N., Achar, BN. 2009. The Microwaveassisted syntheses and a conductivity study of a platinum phthalocyanine and its derivatives. Polyhedron, 28: 1022-1028.
  • Mack, J., Kobayashi, N. 2011. Low Symmetry Phthalocyanines and Their Analogues. Chem. Rev. 111: 281-321.
  • Moeno, S., Nyokong, T. 2009. Solvent and central metal effects on the photophysical and photochemical properties of peripherally tetra mercaptopyridine substituted metallophthalocyanines. J. Photochem. Photobiol. A., 203: 204–210.
  • Nagel, S., Lener, M., Keil, C., Gerdes, R., Lapok, L., Gorun, S.M., Schlettwein, D. 2011. Electrochromic switching of evaporated thin films of bulky, electronic deficient metallophthalocyanines. J. Phys. Chem. C., 115: 8759-8767.
  • Nas, A., Demirbaş, Ü., Pişkin, M., Durmuş, M., Kantekin, H. 2014. The photophysical and photochemical properties of new unmetallated and metallated phthalocyanines bearing four 5-chloroquinolin-8-yloxy substituents on peripheral sites. J. Lumin., 145: 635-642.
  • Nyokong, T. 2007. Effects of substituents on the photochemical and photophysical properties of main group metal phthalocyanines. Coord. Chem. Rev., 251: 1707-1722.
  • Pişkin M., Durmuş M, Bulut M. 2012. Synthesis and investigation on photophysical and photochemical properties of 7-oxy3-methyl-4-phenylcoumarin bearing zinc phthalocyanines Spectrochim. Acta A., 97: 502–511.
  • Pişkin, M. 2016. The novel 2,6-dimethoxyphenoxy substituted phthalocyanine dyes having high singlet oxygen quantum yields. Polyhedron, 104: 17-24.
  • Pişkin, M., Durmuş, M., Bulut, M. 2011. Highly soluble 7-oxy-3-(4-methoxyphenyl) coumarin bearing zinc phthalocyanines: Synthesis and investigation of photophysical and photochemical properties. J. Photochem. Photobiol. A., 223: 37-49.
  • Pişkin, M., Durmuş, M., Bulut, M. 2011. Synthesis, characterization, photophysical and photochemical properties of 7-oxy-3-methyl-4-phenylcoumarin-substituted indium phthalocyanine. Spectrochim. Acta A., 373: 107-116.
  • Reddy, PY., Giribabu, L., Lyness, C., Snaith, HJ., Vijaykumar, C., Chandrasekharam, M., Lakshmikantam, M., Yum, J-H., Kalyanasundaram, K., Grätzel, M., Nazeeruddin, MK. 2007. Efficient sensitization of nanocrystalline TiO2 films by a near-IR-absorbing unsymmetrical zinc phthalocyanine. Angew Chem. Int. Edit., 46: 373-376.
  • Şahin, S., Altun, S., Altındal, A., Odabaş, Z. 2015. Synthesis of novel azo-bridged phthalocyanines and their toluene vapour sensing properties. Sens. Actuators, B., 206: 601-608.
  • Shirk, JS., Pong, RGS., Flom, SR., Heckmann, H., Hanack, M. 2000. Effect of axial substitution on the optical limiting properties of indium phthalocyanines. J. Phys. Chem. A., 104: 1438-1449.
  • Stillman, MJ., Nyokong T. 1989. Phthalocyanines: Properties and Applications, vol. 1, Wiley -VCH Publishers, New York, (Chapter 3). pp-222–232.
  • Tekdaş, DA., Durmuş, M., Yanık, H., Ahsen, V. 2012. Photodynamic therapy potential of thiol-stabilized CdTe quantum dot-group 3A phthalocyanine conjugates (QD-Pc). Spectrochim. Acta A., 93: 313-320.
  • Wierzchowski, M., Sobotta, L., Skupin-Mrugalska, P., Kruk, J., Jusiak, W., Yee, M., Konopka, K., Duzgunes, N., Tykarska, E., Gdaniec, M., Mielcarek, J., Goslinski, T. 2013. Phthalocyanines functionalized with 2-methyl-5-nitro1H-imidazolylethoxy and 1,4,7-trioxanonyl moieties and the effect of metronidazole substitution on photocytotoxicity. J. Inorg. Biochem.,127: 62-72.
  • Zheng, BY., Zhang, HP., Ke, MR., Huang, JD. 2013. Synthesis and antifungal photodynamic activities of a series of novel zinc(II) phthalocyanines substituted with piperazinyl moieties. Dyes Pigm., 99: 185-191.