Yeni Bir Biyobozunur Ag-Soya Yağı Nanokompozit Polimerin Elektronik Uygulaması

Bu çalışmada biyobozunur bir yeni Ag@Soya yağı nanokompozit polimeri sentezlenerek elektronik uygulaması araştırıldı. Soya yağı gümüş nanoparçacıkları Ag NPs ortamında, oda sıcaklığında atmosferik oksijene maruz bırakılarak oto-okside edildi. Nanokompozitin optik özellikleri UV-VIS ve floresans spektrometresi ile belirlendi. Elde edilen Ag@Soya yağı nanokompoziti kullanılarak bir Ag/Ag@Soyayağı/p-Si metal-ara tabaka-yarı iletken MAY Schottky diyodu yapıldı. Bu diyodun karakterizasyonu Akım-Gerilim I-V ölçümleri ile yapıldı ve MAY Schottky diyodun doğrultucu davranış gösterdiği gözlendi. Yarı-logaritmik I-V grafiğinde farklı eğimlere sahip iki ayrı lineer bölge gözlendi. Bu davranış parallel iki diyot ile modellendi ve MAY yapının idealite faktörü, bariyer yüksekliği, seri direnci ve şönt direnci hesaplandı

Electronic Application of a New Biodegradable Ag-Soyabean Oil Nanocomposite Polymer

In this study a new Ag@Soybean oil nanocomposite biodegradable polymer was synthesized and its electronic application was investigated. Soybean oil was autoxidized by exposure to atmospheric oxygen at room temperature with the presence of silver nanoparticles Ag NPs . The optical properties of nanocomposite was estimated by UV-VIS and fluorescence spectrometer. The obtained Ag@Soybean oil nanocomposite biodegradable polymer was used to fabricate Ag/Ag@Soybeanoil/p-Si metal-interlayersemiconductor MIS Schottky diode. Characterization of this MIS structure were made by Current-Voltage I-V measurements and, it was observed that the MIS structure showed rectification behavior. Two distinct linear regions with different slopes were observed in the forward bias semi-logarithmic I-V plot of this diode which were modeled with two parallel diodes. Ideality factor, barrier height, series resistance and shunt resistance of the MIS structure were calculated.

___

  • Allı, A., Hazer, B. 2011. Synthesis and Characterization of Poly (n-Isopropyl Acryl Amide)-g- Poly(Linoleic Acid)/Poly (Linolenic Acid) Graft Copolymers. J Am. Oil Chem. Soc., 88:255–263.
  • Allı, A., Allı, S., Becer ,CR., Hazer, B. 2015. Nitroxide Mediated Copolymerization of Styrene and Pentafluorostyrene Initiated by Polymeric Linoleic Acid. Eur J Lipid Sci Tech., 118(2):279- 287.
  • Allı, A., Allı S., Becer, CR., Hazer, B. 2014. One-pot Synthesis of Poly (Linoleic Acid)-g-Poly (Styrene)-g-Poly (ε-Caprolactone) Graft Copolymers. J. Am. Oil Chem. Soc., 91:849–858.
  • Ateş, B., Köytepe, S., Ulu, A., Balcıoğlu, S. 2015. Yenilenebilir Kaynak Olarak Bitkisel Yağlardan Poliol Eldesi. Poliuretan ve Kompozit Sanayi Dergisi. (http://www.putech- composites. com)
  • Aydoğan, Ş., Sağlam, M., Türüt, A., Önganer, Y. 2009. Series resistance determination of Au/Polypyrrole/p-Si/Al structure by current–voltage measurements at low temperatures. Mater. Sci. Eng. C. 29;1486–1490.
  • Başman, N., Aslan, N., Uzun, O., Çankaya, G., Kölemen, U. 2015. Electrical Characterization of Metal/Diamond-Like Carbon/İnorganic Semiconductor MIS Schottky Barrier Diodes. Microelectron. Eng., 140:18-22.
  • Pal, S., Tak YK., Song JM. 2007. Does the Antibacterial Activity of Silver Nanoparticles Depend on the Shape of the Nanoparticle? A Study of the Gram-Negative Bacterium Escherichia coli. Appl. Environ. Microbiol.,73(6): 1712–1720.
  • Shimada, K., Fujikawa K., Yahara K., Nakamura T. 1992. Antioxidative Properties of Xanthan on the Autoxidation of Soybean Oil in Cyclodextrin Emulsion. J Agric Food Chem., 40(6):945–948.
  • Stirna, U., Fridrihsone A., Lazdin B.¸ Misane M., Vilsone D. 2013. Biobased Polyurethanes from Rapeseed Oil Polyols: Structure, Mechanical and Thermal Properties. J Polym. Environ., 21:952–962.
Karaelmas Fen ve Mühendislik Dergisi-Cover
  • ISSN: 2146-4987
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 2011
  • Yayıncı: ZONGULDAK BÜLENT ECEVİT ÜNİVERSİTESİ