The Theoretical Investigation on Electronic Behavior and Mechanical Properties of Ferromagnet Silver-Based Telluride: Ag3 FeTe

The magnetic nature, mechanical properties and electronic behavior of the ternary silver-based telluride system (Ag3 FeTe4 ) which has sulvanite type simple cubic (SC) crystal structure which has 215 space number and conforms P43m space group, have been inspected by spin-polarized Generalized Gradient Approach (GGA) under Density Functional Theory (DFT). First of all, to investigate suitable magnetic order for this system, it has been considered various antiferromagnetic phases which are A-type (A-AFM), G-type (G-AFM) and C-type (C-AFM) and ferromagnetic (FM) phase. As a result of calculations, it has been understood that, for Ag3 FeTe4 compound, the energetically most favored magnetic phase is ferromagnetic. After that, well-optimized structural parameters and atomic positions have been obtained in ferromagnetic phase. The electronic band structure of this ferromagnetic system indicating half-metallic behavior due to the observed a small direct band gap (Eg = 0.297 eV) in spin-down states, has been investigated. Also, this compound has thermodynamic stability and structural synthesizability due to its calculated negative formation enthalpy values for all different types of magnetic phases. Also, the elastic constants provide the Born Huang criteria, the material is mechanically stable.

Ferromanyetik Gümüş-Tabanlı Tellürün Elektronik Davranışı ve Mekaniksel Özellikleri Üzerine Teorik Araştırma: Ag3 FeTe

Sulvanit tipi basit kübik (BK) kristal yapıya sahip ve 215 boşluk sayısı ile P43m uzay grubuna uyan üçlü gümüş bazlı tellür (Ag3 FeTe4 ) sisteminin manyetik doğası, mekanik özellikleri ve elektronik davranışı, Yoğunluk Fonksiyonel Teorisi (YFT) altında spin-polarize Genelleştirilmiş Gradyan Yaklaşımı (GGY) ile araştırılmıştır. İlk olarak, bu sistem için uygun manyetik fazı araştırmak için, A-tipi, G-tipi ve C-tipi antiferromanyetik ve ferromanyetik faz düşünülmüştür. Hesaplamalar sonucunda, Ag3 FeTe4 bileşiği için, enerjisel olarak en çok tercih edilen manyetik fazın ferromanyetik faz olduğu anlaşılmıştır. Daha sonra, iyi optimize edilmiş yapısal parametreler ve atomik pozisyonlar ferromanyetik faz için elde edilmiştir. Bu ferromanyetik sistemin, elektronik bant yapısında, spin-aşağı durumunda 0.297 eV’lik bir bant boşluğu gözlemlenmesi sebebiyle, yarı metalik bir davranış göstermektedir. Ayrıca, bu bileşik, tüm farklı tip manyetik fazlar için hesaplanan negatif oluşum entalpi değerleri nedeniyle termodinamik kararlılığa ve yapısal sentezlenebilirliğe sahiptir. Ek olarak, elastik sabitler Born Huang kriterlerini sağlaması sebebiyle mekanik olarak da kararlıdır

___

Aiura, Y., Bando, H., Kitagawa, R., Maruyama, S., Nishihara, Y., Horiba, Oshima, M., Shiino, O., Nakatake, M. 2003. Electronic structure of layered 1T – TaSe2 in commensurate charge-density-wave phase studied by angle-resolved photoemission spectroscopy. Phys. Rev. B, 68, 073408.

Ali, MA., Jahan, N., Islam, AKMA. 2014. Sulvanite Compounds Cu3 TMS4 (TM= V, Nb and Ta): Elastic, Electronic, Optical and Thermal Properties using First-principles Method. J. Sci. Res., 6, 407-419.

Anderson, OL. 1963. A simplified method for calculating the debye temperature from elastic constants, J. Phys. Chem. Solids 24, pp. 909-917.

Arıkan, N., İyigör, A., Candan, A., Özduran, M., Karakoç, A., Uğur, Ş., Uğur, G., Bouhemadou, A., Bin-Omran, S., Guechi, N. 2014. Ab-initio Study of the Structural, Electronic, Elastic and Vibrational Properties of the Intermetallic Pd3 V and Pt3 V Alloys in the L12 Phase. Met. Mater. Int., 20, 765- 773.

Bannikov, VV., Shein IR., Ivanovskii, AL. 2007. Electronic structure, chemical bonding and elastic properties of the first thorium-containing nitride perovskite TaThN3, Phys. Stat. Sol. (RRL) 1, pp. 89–91.

Blöchl, PE. 1994. Projector augmented-wave method. Phys. Rev. B, 50, 17953-17979. Debus, S., Harbrecht, B. 2002. Nbx Ta7−x S2 (x = 2.73), a structurally distinct (Nb,Ta)-rich sulfide obtaining its stability from the dissimilar cohesive energy of the two metals. J. Alloys Compd., 338, 253-260.

Delgado, GE., Mora, AJ., Durán, S., Munoz, M., GrimaGallardo, P. 2007. Structural characterization of the ternary compound Cu3 TaSe4 . J. Alloys Compd., 439, 346-349.

Doublet, ML., Remy, S., Lemoigno, F. 2000. Density functional theory analysis of the local chemical bonds in the periodic tantalum dichalcogenides TaX2 (X = S, Se, Te). J. Chem. Phys., 113, 5879-5890.

ELATE: 2016. Elastic tensor analysis, J. Phys. Condens. Matter, 28, 275201.

Erkisi, A. 2019. Magnetic orders and electronic behaviors of new chalcogenides Cu3 MnCh4 (Ch = S, Se and Te): An ab initio study. Philos. Mag., 99, 1941-1955.

Erkisi, A., Surucu, G. 2019. The electronic and elasticity properties of new half-metallic chalcogenides Cu3 TMCh4 (TM = Cr, Fe and Ch = S, Se, Te): an ab initio study. Philos. Mag., 99, 513-529.

Erkisi, A., Yildiz, B., Demir, K., Surucu, G. 2019. First principles study on new half-metallic ferromagnetic ternary zincbased sulfide and telluride (Zn3 VS4 and Zn3 VTe4 ). Mater. Res. Express, 6, 076107.

Feng, K., Wang, W., He, R., Kang, L., Yin, W., Lin, Z., Yao, J., Shi, Y., Wu, Y. 2013. K2 FeGe3 Se8 : A New Antiferromagnetic Iron Selenide. Inorg. Chem., 52, 2022−2028.

Fine, ME., Brown, LD., Marcus, HL. 1984. Elastic constants versus melting temperature in metals, Scr. Metall. 18, pp. 951- 956.

Gupta, DC., Ghosh, S. 2017. First-principal study of full Heusler alloys Co2VZ (Z = As, In), J. Magn. Magn. Mater. 435 pp. 107–116.

Han, F. 2013. A Modern Course in the Quantum Theory of Solids. World Scientific Publishing Co. Pte. Ltd.

Hill, R. 1952. The Elastic Behaviour of a Crystalline Aggregate, Proc. Phys. Soc. A 65, pp. 349-354.

Hohenberg P., Kohn, W. 1964. Inhomogeneous Electron Gas. Phys. Rev., 136, B864-B871.

Kars, M., Rebbah, A., Rebbah, H. 2005. Cu3 NbS4 , Acta Cryst., E61, i180-i181. Katagiri, H. 2005. Cu2 ZnSnS4 thin film solar cells. Thin Solid Films, 480-481, 426–432.

Klepp, KO., Gurtner, D. 2000. Crystal structure of tricopper tetraselenidovanadate (V), Cu3 VSe4 . Z. Krystallogr. NCS, 215, 4.

Knowles KM., Howie, PR. 2015. The Directional Dependence of Elastic Stiffness and Compliance Shear Coefficients and Shear Moduli in Cubic Materials. J. Elast., 120, 87-108.

Kohn W., Sham, LJ. 1965. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. A, 140, A1133-A1138.

Kresse G., Hafner, J. 1993. Ab initio molecular dynamics for liquid metals. Phys. Rev. B, 47, 558–561.

Kresse G., Furthmuller, J. 1996. Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci., 6, 15–50.

Lau, K., McCurdy, AK. 1998. Elastic anisotropy factors for orthorhombic, tetragonal, and hexagonal crystals, Phys. Rev. B 58, pp. 8980-8984.

Lu, YJ, Ibers, JA. 1993. Synthesis and Characterization of Cu3 NbSe4 and KCu2 TaSe4 . J. Solid State Chem., 107, 58-62.

Lv, XS., Deng, ZH., Miao, FX., Gu, GX., Sun, YL., Zhang, QL., Wan, SM. 2012. Fundamental optical and electrical properties of nano- Cu3 VS4 thin film. Optical Materials, 34, 1451-1454.

Mercier, JP., Zambelli, G., Kurz, W. 2002. Introduction to Materials Science. Éditions scientifiques et medicales Elsevier SAS.

Miles, RW., Zoppi, G., Forbes, I. 2007. Inorganic photovoltaic cells. Mater. Today, 10, 20–27.

Monkhorst, HJ., Pack, JD. 1976. Special points for Brillouinzone integrations. Phys. Rev.B, 13, 5188-5192.

Mouhat F., Coudert, FX. 2014. Necessary and sufficient elastic stability conditions in various crystal systems. Phys. Rev. B, 90, 224104.

Mujica, C., Carvajal, G., Llanos, J., Wittke, O. 1998. Redetermination of the crystal structure of copper(I) tetrathiovanadate (sulvanite), Cu3 VS4 . Z. Kristallogr. NCS, 213, 12.

Nakamura, K., Kato, Y., Akiyama, T., Ito, T., Freeman, AJ. 2006. Half-Metallic Exchange Bias Ferromagnetic/Antiferromagnetic Interfaces in Transition-Metal Chalcogenides, Phys. Rev. Lett., 96, 047206.

Nakamura, K., Akiyama, T., Ito, T., Freeman, AJ. 2007. Magnetic structures and half-metallicity at zincblende ferromagnetic/ antiferromagnetic interfaces: Role of tetragonal distortions. J. Magn. Magn. Mater., 310, 2186–2188.

Nakamura, K., Akiyama, T., Ito, T., Freeman, AJ. 2008. Halfmetallicity at ferromagnetic/antiferromagnetic interfaces in zincblende transition-metal chalcogenides: A full-potential linearized augmented plane-wave study within LDA+U. J. Appl. Phys., 103, 07C901.

Nakanishi, H., Endo, S., Taizo, I. 1969. On the Electrical and Thermal Properties of the Ternary Chalcogenides A2 IBIVX3 , AIBVX2 and A3IBVX4 (AI=Cu; BIV=Ge, Sn; BV=Sb; X=S, Se, Te) II. Electrical and Thermal Properties of Cu3SbSe4. Jpn. J. Appl. Phys., 8, 443-449.

Newhouse, PF., Hersh, PA., Zakutayev, A., Richard, A., Platt, HAS., Keszler, DA., Tate, J. 2009. Thin film preparation and characterization of wide band gap Cu3 TaQ4 (Q= S or Se) p-type semiconductors. Thin Solid Films, 517, 2473-2476. Nitsche, R., Wild, P. 1967. Crystal Growth and Electro-optic Effect of Copper-Tantalum-Selenide, Cu3TaSe4. J. Appl. Phys., 38, 5413-5414.

Page, YL., Saxe, P. 2001. Symmetry-general least-squares extraction of elastic coefficients from ab initio total energy calculations. Phys. Rev. B, 63, 174103.

Pauling, L., Hultgren, R. 1932. The Crystal Structure of Sulvanite, Cu3 VS4. Z. Kristallogr., 84, 204-212.

Perdew, JP., Burke, K., Ernzerhof, M. 1996. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 77, 3865-3868.

Pettifor, DG. 1992. Theoretical predictions of structure and related properties of intermetallics. Mater. Sci. Technol., 8, 345- 349.

Pugh, SF. 1954. XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, Lond. Edinb. Dubl. Phil. Mag. 45, pp. 823-843.

Reuss, A. 1929. Berechnung der Fliessgrenze von Mischkristallen auf Grund der Plastizitatsbedingung fur Einkristalle [Calculation of the liquid limit of mixed crystals on the basis of the plasticity condition for single crystals], J. Appl. Math. Mech. 9 pp. 49–58.

Schreiber, E., Anderson, OL., Soga, N. 1973. Elastic Constants and their Measurements, McGraw-Hill, New York.

Shannon, N., Joynt, R. 2000. The spectral, structural and transport properties of the pseudogap system (TaSe4) 2 I. Solid State Commun., 115, 411-415.

Skoug, EJ., Cain, JD., Morelli, DT. 2010. Structural effects on the lattice thermal conductivity of ternary antimony- and bismuth-containing chalcogenide semiconductors. Appl. Phys. Lett., 96, 181905.

Tate, J., Newhouse, PF., Kykyneshi, R., Hersh, A., Kinney, J., McIntyre, DH., Keszler, DA. 2008. Chalcogen-based transparent conductors. Thin Solid Films, 516, 5795-5799.

Temple, DJ., Kehoe, AB., Allen, JP., Watson, GW., Scanlon, DO. 2012. Electronic Structure, and Bonding in CuMCh2 (M= Sb, Bi; Ch = S, Se): Alternative Solar Cell Absorber Materials. J. Phys. Chem. C, 116, 7334–7340.

Vinet, P., Rose, JH., Ferrante, J., Smith, JR. 1969. “Universal Features of the Equation of State of Solids. J. Phys.: Condens. Matter, 1, 1941.

Voigt, W. 1928. Lehrbuch der Kristallphysik [The textbook of crystal physics], B.G. Teubner, Leipzig und Berlin.

Wu, DH., Wang, HC., Wei, LT., Pan, RK., Tang, BY. 2014. First-principles study of structural stability and elastic properties of MgPd3 and its hydride, J. Magnes. Alloy. 2 pp. 165–174.

Wyckoff, RWG. 1963. Crystal Structures Vol. 1. John Wiley & Sons Ltd.

Zener, C. 1948. Elasticity and Anelasticity of Metals. University of Chicago Press, Chicago.

Zwick, F., Berger, H., Grioni, M., Margaritondo, G., Forro, L., La Veigne, J., Tanner, DB., Onellion, M. 1999. Coexisting one-dimensional and three-dimensional spectral signatures in TaTe4 . Phys. Rev. B, 59, 7762-7766.

Zhou, M., Yin, W., Liang, F., Mar, A., Lin, Z., Yao, J., Wu, Y. 2016. Na2 MnGe2 Se6: a new Mn-based antiferromagnetic chalcogenide with large Mn…Mn separation. J. Mater. Chem. C, 4, 10812.

Zhao, E., Wu, Z. 2008. Electronic and mechanical properties of 5d transition metal mononitrides via first principles. J. Solid State Chem., 181, 2814–2827.
Karaelmas Fen ve Mühendislik Dergisi-Cover
  • ISSN: 2146-4987
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 2011
  • Yayıncı: ZONGULDAK BÜLENT ECEVİT ÜNİVERSİTESİ
Sayıdaki Diğer Makaleler

Meme Kanserinin Evrişimsel Sinir Ağı Modelleriyle Tespitinde Farklı Görüntü Büyütme Oranlarının Etkisi

ALİ NARİN, Safa Kaan KEFELİ

Durağan Durum Görsel Uyaran Potansiyellerinden Bakış Bilgilerini Çıkarma

Ebru SAYILGAN, Yilmaz Kemal YÜCE, YALÇIN İŞLER

Rüzgar Enerjisi Santral (RES) Yapım Yerlerinin CBS Dayalı Çok Kriterli Karar Analizi ile Belirlenmesi: Yenice İlçesi (KARABÜK) Örneği

Deniz ARCA, Hülya Keskin ÇITIROĞLU

Eksenel Yüklü Bir Öngerilmeli Demetin Sonlu Elemanlar Modellenmesi ve Analizi

Abdullah TOMBAK, Yusuf Aytaç ONUR

Ferromanyetik Gümüş-Tabanlı Tellürün Elektronik Davranışı ve Mekaniksel Özellikleri Üzerine Teorik Araştırma: Ag3FeTe4

Aytaç ERKİŞİ

Beauveria bassiana’ nın Galleria mellonella L. (Lepidoptera: Pyralidae) ve Parasitoiti Trichogramma cacoeciae Üzerine Etkileri

Benay TUNÇSOY, Francisco BUENO-PALLERO, Lidia DİONİSİO, Luis NETO, Pınar ÖZALP

Flaş Elektroretinogram (fERG) Testi İçin Normal Değerlerin Belirlenmesi

Rukiye UZUN ARSLAN, Okan ERKAYMAZ, İrem ŞENYER YAPICI

Mikroemülsiyon Tekniği ile Üretilmiş Hidroksiapatit Nanoparçacıkların Ti6Al4V Altlıklar Üzerine Elektroforetik Biriktirme Yöntemi ile Kaplanması ve Vakum Ortamında Sinterlenmeleri

MUSTAFA BURAK TELLİ, Arzu ALTINPINAR

Alkali İçeriği ve Aktivatör Modülünün Alkali Aktive Edilmiş Harçların Mekanik Özellikleri Üzerindeki Etkisi

Ahmet Onur PEHLİVAN

The Theoretical Investigation on Electronic Behavior and Mechanical Properties of Ferromagnet Silver-Based Telluride: Ag3 FeTe

Aytac ERKİSİ, Bugra YILDIZ