Sol-jel Kaplama Çözeltisi Bileşiminin Hidrojen Peroksit Yanıtlarına Etkisi

Sol-jel prosesi diğer film yapım metotlarına göre düşük sıcaklıkta işlenmesi, büyük yüzeylerin kolayca kaplanması, film veya kaplamanın yüzeye iyi yapışabilmesi, homojen oksit film oluşması, filmin bileşim ve gözenekliliğinin ayarlanabilmesi gibi birçok avantaja sahip olduğu için yaygın olarak kullanılan bir metottur. Sol-jel kalın filmler elektro-aktif türün difüzyonunu engelleyebileceği için sensör uygulamaları için uygun değildir. Homojen ve ince filmler alkolle seyreltilmiş soller kullanılarak hazırlanabilir. Daha gözenekli bir yapıya sahip olan ince filmlerden analitin difüzyonu daha hızlıdır ve böylece sensörün cevap süresi daha kısa olur. Film gözenekliliği sol-jel kaplama çözeltilerinin bileşiminin değiştirilmesiyle ayarlanabilir. Bu çalışmada, GLYMO ve TEOS kullanılarak hazırlanan sol-jel kaplama çözeltisinin bileşiminin hidrojen peroksit sensörün yanıtlarına etkisi incelenmiştir. Çözelti bileşiminin hidrojen peroksit sensörün yanıtları üzerine önemli bir etkiye sahip olduğu belirlenmiştir

Effect of the Composition of Sol-gel Coating Solution on Responses of Hydrogen Peroxide

The sol-gel process is an extensively used method to prepare the various coating and films because it has a many advantages according to other film formation methods, such as low temperature processing, easy coating of large surfaces, good adhesion ability to surface of film or coating, homogeneous oxide film formation, and adjustment of film composition and porosity. Solgel thick films are not appropriate for the sensor applications because they may block the diffusion of electro-active analyte through the film. Homogeneous and thin films can be prepared using sols diluted with alcohol. The diffusion of analyte through thin films, which have more porous structure, is faster and therefore, the response time of sensor is shorter. The film porosity can be adjusted by changing the composition of sol-gel coating solution. In this study, effect of the composition of sol-gel coating solution prepared using GLYMO and TEOS on responses of hydrogen peroxide sensor has been investigated. It was determined that the composition of solution had an important effect on the responses of hydrogen peroxide sensor

___

  • Bard, AJ., Faulkner, LR. 2001. Electrochemical methods, fun- damentals and applications, Wiley, New York.
  • Brinker, CJ., Scherer, GW. 1989. Sol-gel science, Academic Press, New York.
  • Chou, TP., Chandrasekaren, C., Cao, GZ. 2003. Sol-gel-derived hybrid coatings for corrosion protection. J. Sol-Gel Sci. Tech- nol., 26:321-327.
  • Collinson, MM. 2002. Recent trends in analytical application of organically modified silicate materials. Trends Anal. Chem., 21:30-38.
  • Dash, S., Mishra, S., Patel, S., Mishra, BK. 2008. Organically modified silica: Synthesis and applications due to its sur- face interaction with organic molecules. Adv. Colloid Inter- face Sci., 140:77-94.
  • Diamond, D. 1998. Principles of chemical and biological sen- sors, Wiley, New York.
  • Guglielmi, M. 1997. Sol-gel coatings on metals. J. Sol-Gel Sci. Technol., 8:443-449.
  • Gupta, R., Mozumdar, S., Chaudhury, NK. 2005. Effect of eth- anol variation on the internal environment of sol-gel bulk and thin films with aging. Biosens. Bioelectron., 21:549-556.
  • Haryadi, H. 2005. Porous hybrid organic-inorganic silica materials: preparation, structural and transport properties. PhD Thesis, The University of New South Wales Australia.
  • Li, J., Chia, LS., Goh, NK., Tan SN., Ge, H. 1997. Mediated amperometric glucose sensor modified by the sol-gel method. Sens. Actuators B, 40:135-141.
  • Lyons, MEG. 1996. Electroactive polymer electrochemistry. Part 2: Methods and applications, Plenum Press, New York. Macan, J., Ivankovic, H., Ivankovic, M., Mencer, HJ. 2004.
  • Synthesis and characterization of organic-inorganic hybrids based on epoxy resin and 3- glycidyloxypropyltrimethoxsysilane. J. Appl. Poly. Sci., 92:498-505.
  • Mackenzie, JD., Bescher, EP. 2000. Physical properties of solgel coatings. J. Sol-Gel Sci. Technol., 19:23-29.
  • Matejka, L., Dukh, O., Brus, J., Simonssick Jr., WJ., Meissner, B. 2000. Cage-like structure formation during sol-gel polymerization of glycidyloxypropyltrimethoxy silane. J. Non-Cryst. Solids, 270:34-47.
  • Pauliukaite, R., Paquim, AMC., Brett, AMO., Brett, CMA. 2006. Electrochemical, EIS and AFM characterization of biosensors: Trioxysilane sol-gel encapsulated glucose oxidase with two different redox mediators. Electrochim. Acta, 52:1-8.
  • Sayılkan, H., Şener, Ş., Şener, E., Sülü, M. 2003. The sol-gel synthesis and application of some anticorrosive coating materials. Mater. Sci., 39:733-739.
  • Tatar, P., Kiraz, N., Asiltürk, M., Sayılkan, F., Sayılkan, H., Arpaç, E. 2007. Antibacterial thin films on glass substrate by sol-gel process. J. Inorg. Organomet. Poly. Met., 17:525-533.
  • Tripathi, VS., Kandimalla, VB., Ju, H. 2006. Preparation of ormosil and its application in the immobilizing biomolecules. Sens. Actuators B, 114:1071-1082.
  • Uyanık, M., Arpaç, E., Schmidt, H., Akarsu, M., Sayılkan, F., Sayılkan, H. 2006. Heat-resistant hydrophobic-oleophobic coating. J. Appl. Poly. Sci., 100:2386-2392.
  • Walcarius, A. 2001. Electroanalysis with pure, chemically modified and sol-gel derived silica-based materials. Electroanalysis, 13:701-718.
  • Walcarius, A., Mandler, D., Cox, JA., Collinson, M., Lev, O. 2005. Exciting new directions in the intersection of functionalized sol-gel materials with electrochemistry. J. Mater. Chem., 15:3663-3689.
  • Wang, J. 1991. Modified electrodes for electrochemical sensors. Electroanalysis, 3:255-259.
  • Wang, J. 2000. Analytical electrochemistry, Wiley, New York. Wen, J., Wilkes, GL. 1996. Organic/inorganic hybrid network materials by the sol-gel approach. Chem. Mater., 8:1667-1681.
  • Wu, J., Suls, J., Sansen, W. 1999. Amperometric glucose with enzyme covalently immobilized by sol-gel technology. Anal. Sci., 15:1029-1032.