Elektro Eğirme Yöntemiyle Nano Boyutlu $TiO_2$ Parçacık katkılı PLA Nano Fiber Üretimi

Bu çalışmada biyo-bozunabilir polimerlerden polilaktik asit (PLA) içerisine oksitleyici, foto aktivite ve biyo-uyumluluk gibi gelişmiş özelliklere sahip nano boyutlu titanyum oksit ($TiO_2$ ) katılarak biyo-analiz ve biyomedikal gibi uygulama alanlarında kullanılabilecek nano fiber üretimi elektro eğirme yöntemi kullanılarak gerçekleştirilmiştir. Nano boyutlu$TiO_2$ parçacıkların PLA nano fiber içerisinde dağılımına elektro eğirme yöntem parametrelerinin etkileri detaylı olarak incelenmiştir. Elde edilen fiberlerin çapları ve morfolojik özellikleri taramalı elektron mikroskobu (SEM) ve yüksek çözünürlüklü geçirimli elektron mikroskobu (HRTEM) kullanılarak belirlenmiş, elementel analiz için enerji dağılım spektrometresi (EDS) kullanılmıştır. En iyi üretim koşulları; 0.63 mm iğne çapında, 10 kV güç değerinde ve 0.3 ml/sa akış hızı şeklinde belirlenmiştir.

Production of Nano Sized $TiO_2$ Blended PLA Nano Fiber with Electrospinning Method

In this study, nano-fiber production, which can be used in bio-analysis and biomedical applications by adding nano-sized titanium oxide ($TiO_2$ ) with advanced properties such as oxidizing, photo activity and biocompatibility, from biodegradable polymers to poly lactic acid (PLA) was carried out by using electro spinning method. The effects of the electro spinning method parameters on the distribution of nano-sized $TiO_2$ particles in PLA nano fiber were investigated in detail. The diameters and morphological properties of the obtained fibers were determined using scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM), and energy dispersive spectrometry (EDS) was used for elemental analysis. Best production conditions were determined as; 0.63 mm needle diameter, 10 kV power and 0.3 ml / h flow rate.

___

  • Armentano, I., Dottori, M., Fortunati, E., Mattioli, S., Kenny, J.M., 2010.Biodegradable polymer matrix nanocomposites for tissue engineering: A review. Polym. Degrad. Stab., 95: 2126- 2146. https://doi.org/10.1016/j.polymdegradstab.2010.06.007
  • Barkoula, N. M., Alcock, B., Cabrera, N. O., Peijs T., 2008. Fatigue properties of highly oriented polypropylene tapes and all-polypropylene composites. Polym. Polym. Compos., 16 ( 2): 101–113. https://doi.org/10.1177/096739110801600203
  • Beachley, V., Wen, X., 2009. Effect of electrospinning parameters on the nanofiber diameter and length. Mater. Sci. Eng. C, 29(3): 663–668. https://doi.org/10.1016/j.msec.2008.10.037
  • Bhardwaj, N., and Kundu, S. C., 2010, Electrospinning: A fascinating fiber fabrication technique. Biotechnol. Adv., 28 (3): 325–347. https://doi.org/10.1016/j.biotechadv.2010.01.004
  • Buzarovska, A., Grozdanov, A., 2012. Biodegradable Poly(Llactic acid)/TiO2 Nanocomposites:Thermal Properties and Degradation. J. Appl. Polym. Sci., 123: 2187–2193. https://doi. org/10.1002/app.34729
  • Buzarovska, A., 2013. PLA Nanocomposites with Functionalized TiO2 Nanoparticles. Polym-Plast Technol, 52: 280–286. https:// doi.org/10.1080/03602559.2012.751411
  • Casasola, R., Thomas, N.L., Trybala, A., Georgiadou, S., 2014. Electrospun poly lactic acid (PLA) fibres: Effect of different solvent systems on fibre morphology and diameter. Polym., 55:4728 – 4737. https://doi.org/10.1016/j. polymer.2014.06.032
  • Chen, C., Lv, G., Pan, C., Song, M., Wu, C., Guo, D., Wang, X., Chen, B., Gu, Z., 2007. Poly(lactic acid) (PLA) based nanocomposites-a novel way of drug-releasing. Biomed. Mater., 2(4):L1–L4. http://dx.doi.org/10.1088/1748-6041/2/4/L01
  • Chong, E.J., Phan, T.T., Lim, I.J., Zhang, Y.Z., Bay, B.H., Ramakrishna, S., Lim, C.T., 2007. Evaluation of electrospun PCL/gelatin nanofibrous scaffold for wound healing and layered dermal reconstitution. Acta Biomater., 3(3): 321–330. https://doi.org/10.1016/j.actbio.2007.01.002
  • Costa, R. G. F., Brichi, G. S., Ribeiro, C., Mattoso, L. H. C., 2016.. Nanocomposite fibers of poly(lactic acid)/titanium dioxide prepared by solution blow spinning. Polym. Bull.,73: 2973–2985. https://doi.org/10.1007/s00289-016-1635-1
  • Deitzel, J. M., Kleinmayer, J., Harris, D., Beck Tan, N. C., 2001. The effect of processing variables on the morphology of electrospun nanofibres and textiles. Polym., 42: 261–272. https://doi.org/10.1016/S0032-3861(00)00250-0
  • Diebold, U. , 2003. The surface science of titanium dioxide. Surf. Sci. Rep.48(5–8): 53–229. https://doi.org/10.1016/S0167- 5729(02)00100-0
  • Ding, J., Zhang, J., Li, J., Li, D., Xiao, C., Xiao, H., Yang, H., Zhuang, X., Chen, X., 2019. Electrospun polymer biomaterials. Prog. Polym. Sci.,90:1–34. https://doi. org/10.1016/j.progpolymsci.2019.01.002
  • Gong, M., Zhao, Q., Dai, L., Li, Y., Jiang, T., 2017. Fabrication of polylactic acid/hydroxyapatite/graphene oxidecomposite and their thermal stability, hydrophobic and mechanicalproperties. J. Asian Ceram. Soc., 5: 160–168. https://doi.org/10.1016/j. jascer.2017.04.001
  • Gasmi, S., Hassan, M. K., Luyt, A. S., 2018. Crystallization and dielectric behaviour of PLA and PHBV in PLA/PHBV blends and PLA/PHBV/TiO2 nanocomposites. EXPRESS Polym. Lett., 13(2): 199–212. https://doi.org/10.3144/ expresspolymlett.2019.16
  • Gupta, K. K., Mishra, P. K., Srivastav, P., Gangwar, M., Nath, G., Maiti, P., 2013. Hydrothermal in situ preparation of TiO2 particles onto poly(lactic acid) electrospun nanofibres. Appl. Surf. Sci., 264: 375– 382. https://doi.org/10.1016/j. apsusc.2012.10.029
  • Haider, A., Haider, S., Kang, I.K., 2018. A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arab. J. Chem.,11( 8): 1165-1188.https://doi. org/10.1016/j.arabjc.2015.11.015
  • Herrero-Herrero, M., Gómez-Tejedor, J. A.,Vallés-Lluch, A., 2018. PLA/PCL electrospun membranes of tailored fibres diameter as drug delivery systems. Eur. Polym. J., 99: 445–455. https://doi.org/10.1016/j.eurpolymj.2017.12.045
  • Hong, Y., Li, Y., Zhuang, X., Chen, X., Jing X., 2009. Electrospinning of multicomponent ultrathin fibrous nonwovens for semi-occlusive wound dressings. J. Biomed. Mater. Res. Part A, 89(2): 345-354. https://doi.org/10.1002/ jbm.a.31968
  • Hu, X., Liu, S., Zhou, G., Huang, Y., Xie, Z., Jing, X. 2014. Electrospinning of polymeric nanofibers for drug delivery applications. J. Control. Release, 185(1): 12–21. https://doi. org/10.1016/j.jconrel.2014.04.018
  • Huang, Z. M., Zhang, Y. Z., Kotaki, M., Ramakrishna, S., 2003. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol., 63 (15): 2223–2253. https://doi.org/10.1016/S0266-3538(03)00178-7
  • Jahangir, M. A., Rumi, T. M., Wahab, A., Rahman, M. A., Bin Sayed, Z., 2017. Poly Lactic Acid (PLA) Fibres: Different Solvent Systems and Their Effect on Fibre Morphology and Diameter. Am. J. Chem., 7( 6): 177–186. https://doi. org/10.5923/j.chemistry.20170706.01
  • Lee, J. K. Y., Chen, N., Peng, S., Li, L., Tian, L., Thakor, N., Ramakrishna, S. 2018. Polymer based composites by electrospinning: Preparation & functionalization with nanocarbons. Prog. Polym. Sci., 86: 40–84. https://doi. org/10.1016/j.progpolymsci.2018.07.002
  • Macossay, J., Marruffo, A., Rincon, R., Eubanks, T., Kuang A., 2006. Effect of needle diameter on nanofiber diameter and thermal properties of electrospun poly(methyl methacrylate). Polym. Adv. Technol., 18: 180–183. https://doi.org/10.1002/ pat.844
  • Man, C., Zhang, C., Liu, Y., Wang, W., Ren, W., Jiang, L., Reisdorffer, F., Nguyen, T. P., Dan, Y., 2012. Poly (lactic acid)/ titanium dioxide composites: Preparation and performance under ultraviolet irradiation. Polym. Degrad. Stab., 97 : 856- 862. https://doi.org/10.1016/j.polymdegradstab.2012.03.039
  • Ojijo, V., S. Ray, S., 2013. Processing strategies in bionanocomposites. Prog. Polym. Sci., 38: 1543–1589. https:// doi.org/10.1016/j.progpolymsci.2013.05.011
  • Pan, J., Thierry, D., Leygraf, C., 1996. Electrochemical impedance spectroscopy study of the passive oxide film on titanium for implant application. Electrochim. Acta, 41( 7–8): 1143–1153. https://doi.org/10.1016/0013-4686(95)00465-3
  • Pillay, V., Dott, C., Choonara, Y. E., Tyagi, C., Tomar, L., Kumar, P., C. du Toit, L., Ndesendo, V. M. K., 2012. A Review of the Effect of Processing Variables on the Fabrication of Electrospun Nanofibers for Drug Delivery Applications. J. Nanomater., 2013: 1-22 https://doi.org/10.1155/2013/789289
  • Ramakrishna, S. , Fujihara, K. , Teo, W.E., Lim, T.C.,and MaIntroduction, Z. 2005. An Introductıon to Electrospınnıng and Nanofıbers. World Scientific Publishing Co. Pte. Ltd., ISBN 981-256-415-2. https://doi.org/10.1142/5894
  • Rasouli, H.R., Golestani-fard, F., Mirhabibi, A.R., Nasab, G.M., Mackenzie, K.J.D., Shahraki, M.H 2015. Fabrication and properties of microporous metakaolin-based geopolymer bodies with polylactic acid (PLA) fibers as pore generators. Ceram. Int., 41(6): 7872-7880. https://doi.org/10.1016/j. ceramint.2015.02.125
  • Rong, Z., Zeng, W., Kuang, Y., Zhang, J., Liu, X., Lu, Y., Cheng, X., 2015. Enhanced Bioactivity of Osteoblast-like Cells on Poly(lactic acid)/Poly(methyl methacrylate)/Nanohydroxyapatite Scaffolds for Bone Tissue Engineering. Fıber Polym, 16 (2): 245-253. https://doi.org/10.1007/s12221-015- 0245-0.
  • Scaffaro, R., Lopresti, F., 2018. Processing, structure, property relationships and release kinetics of electrospun PLA/ Carvacrol membranes. Eur. Polym. J., 100: 165–171. https:// doi.org/10.1016/j.eurpolymj.2018.01.035
  • Sill, T. J., Recum. H. A., 2008. Electrospinning: Applications in drug delivery and tissue engineering. Biomaterials, 29: 1989- 2006. https://doi.org/10.1016/j.biomaterials.2008.01.011
  • Son, W. K., Youk, J. H., Lee, T. S., Park, W. H., 2004. The effects of solution properties and polyelectrolyte on electrospinning of ultrafine poly(ethylene oxide) fibers. Polym., 45( 9): 2959– 2966. https://doi.org/10.1016/j.polymer.2004.03.006
  • Song, M., Pan, C., Li, J., Wang, X., Gu Z., 2006. Electrochemical Study on Synergistic Effect of the Blending of Nano TiO2 and PLA Polymer on the Interaction of Antitumor Drug with DNA. Electroanalysis, 18 (19-20): 1995 – 2000. https://doi. org/10.1002/elan.200603613
  • Song, M., Pan, C., Chen, C., Li, J., Wang, X., Gu Z., 2008.The application of new nanocomposites: Enhancement effect of polylactide nanofibers/nano-TiO2 blends on biorecognition of anticancer drug daunorubicin. Appl. Surf. Sci., 255: 610–612. https://doi.org/10.1016/j.apsusc.2008.06.131
  • Song, K., Wu, Q., Qi, Y., Kärki, T., 2017. Electrospun nanofibers with antimicrobial properties. In: Afshari, M., Electrospun Nanofibers. Woodhead Publishing Series in Textiles, Elsevier Inc., p.p. 551-569.
  • Tan, S-H., Inai, R., Kotaki, M., Ramakrishn, S., 2005. Systematic parameter study for ultra-fine fiber fabrication via electrospinning process. Poly., 46:6128–6134. https://doi. org/10.1016/j.polymer.2005.05.068
  • Taylor, G., 1964. Disintegration of Water Drops in an Electric Field,” Proc. R. Soc. Lond. A Math. Phys. Eng. Sci., 280 (1382): 383–397. https://doi.org/10.1098/rspa.1964.0151
  • Taylor, G., 1969. Electrically Driven Jets. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci., 313(1515): 453–475. https://doi. org/10.1098/rspa.1969.0205
  • Yang, T., Wu, D., Lu, L., Zhou, W., Zhang, 2011. Electrospinning of Polylactide and Its Composites With Carbon Nanotubes. Polym. Compos.,32(8): 1280-1288. https://doi.org/10.1002/ pc.21149
  • Zhao, S., Wu, X., Wang, L., Huang, Y., 2004. Electrospinning of Ethyl–Cyanoethyl Cellulose/Tetrahydrofuran Solutions. J. Appl. Polym., 91: 242–246. https://doi.org/10.1002/app.13196
  • Zong, X., Kim, K., Fang, D., Ran, S., Hsiao, B. S., Chua, B., 2002. Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polym., 43: 4403–4412. https://doi.org/10.1016/S0032-3861(02)00275-6