Easy Way for Removal of Methylene Blue with Low-Cost Biosorbent

Dye contamination of water is important because water quality is highly affected by color and toxicology of dyes. Removal of methylene blue (MB) from aqueous solution was performed with Anadara Inaequivalvis type of seashells. There are many studies was found with seashells but this type of seashell was firstly used as biosorbent for dye removal with 23 full factorial design. This study used untreated Anadara inaequivalvis shells as a biosorbent for methylene blue removal from aqueous solutions. The biosorbent was characterized using XRD, BET, and FT-IR. Results showed that the main seashell structure was aragonite with a heterogenic surface. Previously many dye removal studies were performed with classic methods, nowadays design of experiments were used for these studies. This method brings to examine the best optimum conditions of biosorption and also to determine the effects of experimental factors and interactions between the experimental factors with reduce the number of experiments. The three factors; pH, initial dye concentration and amount of biosorbents effects were investigated in 25 mL dye solution at 15 min. The high percentage removal of the methylene blue on Anadara Inaequivalvis shells powder was found % 90.46 when the pH value was 8, at 1.5 mg biosorbents with 100 mg/L methylene blue concentration by easy, cheap and rapid way.

Ucuz Biyosorbent ile Metilen Mavisinin Uzaklaştırılması İçin Kolay Yol

Sulardaki boya kirliliği önemlidir çünkü boyaların toksikolojisinden ve renk vermesinden dolayı suyun kalitesi ciddi olarak etkilenmektedir. Sulu çözeltilerden metilen mavisinin uzaklaştırılması Anadara Inaequivalvis tipi deniz kabukları ile gerçekleştirilmiştir. Deniz kabukları ile ilgili birçok çalışma bulunmuştur fakat bu tip deniz kabuklarının 23 tam faktoriyel dizaynla boya gideriminde biyosorbent olarak kullanımı ilk defadır. Bu çalışma da sulu çözeltilerden metilen mavisinin uzaklaştırılmasında işlem görmemiş Anadara inaequivalvis kabukları biyosorbent olarak kullanılmıştır. XRD, BET ve FT-IR kullanılarak biyosorbent karakterize edilmiştir. Deniz kabuğunun yapısının aragonit fazda ve heterojenik yüzeyde olduğunu elde edilen sonuçlar göstermiştir. Daha önceleri birçok boya uzaklaştırma çalışmaları klasik metotlarla gerçekleştirilmekteydi, şimdilerde deney tasarımları bu çalışmalarda kullanılmaktadır. Bu yöntemler biyosorpsiyonun optimum şartlarını ve deneysel faktorlerin ve bunların etkileşimlerinin etkilerinin belirlenmesini deney sayısını azaltarak vermektedir. Üç faktör; başlangıç boya derişimi, biyosorbent miktarı ve pH’nın etkileri 25 mL boya çözeltisinde 15 dakikada incelenmiştir. Anadara inaequivalvis kabukları üzerindeki en yüksek boya giderim yüzdesi pH değeri 8, 1.5 mg biyosorbent içeren 100 mg/L metilen mavisi çözeltisinde yanlızca 8 deney ile %90.46 olarak bulunmuştur.

___

Abbasi, M., Asl, NR. 2008. Sonochemical degradation of Basic Blue 41 dye assisted by nanoTiO2 and H2 O2. J. Hazard. Mater.153: 942–947.

Annadurai, G., Juang, RS., Lee, DJ. 2001. Adsorption of rhodamine 6G from aqueous solutions on activated carbon, J. Environ. Sci. Health. A. 36 (5): 715-725.

Bingöl, D., Karayünlü Bozbaş, S. 2012. Removal of Lead (II) from Aqueous Solution on Multiwalled carbon nanotube by using response surface methodology. Spectrosc. Lett. 45: 324- 329.

Deniz, F. 2013. Optimization of methyl orange bioremoval by Prunus amygdalus L. (almond) shell waste: Taguchi methodology approach and biosorption system design. Desalin. Water Treat., 51: 7067-7073.

Gulen, J., Aroguz, AZ., Dalgın, D. 2005. Adsorption kinetics of azinphosmethyl from aqueous solution onto pyrolyzed horseshoe sea crab shell from the Atlantic Ocean. Bioresource Technol. 96: 1169–1174.

Hakimelahi, M., Moghaddam, MRA., Hashemi, SH. 2012. Biological Treatment of Wastewater Containing an Azo Dye Using Mixed Culture in Alternating Anaerobic/Aerobic Sequencing Batch Reactors. Biotechnol. Bioprocess. Eng. 17: 875-880.

Hameed, BH. 2008. Equilibrium and kinetic studies of methyl violet sorption by agricultural waste, J. Hazard. Mater. 154: 204-212.

Haque, E., Jun, JW., Jhung SH. 2011. Adsorptive removal of methyl orange and methylene blue from aqueous solution with a metal-organic framework material, iron terephthalate (MOF-235). J. Hazard. Mater. 185: 507-511.

Hines, WW. Montgomery, D.C., 1990. Probability and Statistics in Engineering and Management Science, John Wiley and Sons.

Jalil, AA., Triwahyono, S., Yaakob, MR., Azmi, ZZA., Sapawe, N., Kamarudin, NHN., Setiabudi, HD., Jaafar, NF., Sidik, SM., Adam, SH., Hameed, BH. 2012. Utilization of bivalve shell-treated Zea mays L. (maize) husk leaf as a lowcost biosorbent for enhanced adsorption of malachite green. Bioresource Technol. 120 : 218–224.

Kamba, AS., Ismail, M., Ibrahim, TAT., Zakaria, ZAB. 2013. Synthesis and characterization of calcium carbonate aragonite nanocrystals from cockle shell powder (Anadara granosa). J. Nanomater. 2013: 1–9.

Karayünlü Bozbaş, S., Boz,Y. 2016. Evaluating the optimum working parameters for the removal of methyl orange from aqueous solution based on a statistical design. Desalin. Water Treat. 57: 7040-7046.

Kazemi, SY., Biparva, P., Ashtiani, E. 2016. Cerastoderma lamarcki shell as a natural, low cost and new adsorbentto removal of dye pollutant from aqueous solutions: Equilibrium and kinetic studies. Ecol. Eng. 88: 82–89.

Liu, F., Zou, H., Hu, J., Liu, H., Peng, J., Chen, Y., Lu, F., Huo, Y. 2016. Fast removal of methylene blue from aqueous solution using porous soy protein isolate based composite beads. Chem Eng J. 287: 410–418.

Mangat, K., Kaur, S. 2014. Efficient removal and separation of anionic dyes from aqueous medium by the application of reverse micelles of cationic surfactants, Desalin. Water. Treat. 52 :3555–35631.

Mathialagan, T., Viraraghavan, T. 2005. Biosorption of pentachlorophenol by fungal biomass from aqueous solutions: A factorial design analysis. Environ. Technol. 26: 571-579.

Özbay, N., Yargıç, AF., Yarbay-Şahin, RZ., Önal, E. 2013. Full factorial experimental Design analysis of reactive dye removal by carbon adsorption. J. Chem. 13:1-13.

Pavan, FA., Gushikem, Y., Mazzocato, AC., Dias, SLP., Lima, EC. 2007. Statistical design of experiments as a tool for optimizing the batch conditions to methylene blue biosorption on yellow passion fruit and mandarin peels, Dyes Pigments. 72: 256-266.

Sleiman, M., Vildozo, DL., Ferronato, C., Chovelon, JM. 2007. Photocatalytic degradation of azo dye Metanil Yellow: optimization and kinetic modeling using a chemometric approach, Appl. Catal. B. 77: 1–11.

Srinivasan, A., Viraraghavan, T. 2010. Oil removal from water by fungal biomass: A factorial design analysis, J. Hazard. Mater. 175: 695-702.

Sudarjanto, G. Keller-Lehmann, B., Keller, J. 2006. Optimization of integrated chemical–biological degradation of a reactive azo dye using response surface methodology, J. Hazard. Mater. 138: 160–168.

Suteu, D., Bilba, D., Doroftei, F., Malutan, T. 2011. Sorption of brilliant red HE-3B reactive dye from aqueous solution onto seashells waste: equilibrium and kinetic studies. Separ. Sci. Technol. 46: 1462–1471.

Tizi, H., Berrama, T., Kaouah, F., Bendjama, Z. 2013. Study of the conditions of activated carbon preparation from an agriculture by-product for 4BA elimination in aqueous solution using full factorial design, Desalin. Water Treat. 51:7286-7295

Turan, NG., Elevli, S., Mesci, B. 2011. Adsorption of copper and zinc ions on illite: Determination of the optimal conditions by the statistical design of experiments. Appl. Clay Sci. 52 (2011) 392-399.

Zhu, MX., Lee, L., Wang, HH., Wang, Z. 2007. Removal of an anionic dye by adsorption/ precipitation processes using alkaline white mud. J. Hazard. Mater. 149: 735–741.