E -4-brom-5-metoksi-2- o-tolilimino metil fenol Bileşiğinin X-ışını ve YFK ile İncelenmesi

E -4-bromo-5-methoxy-2- o-tolylimino methyl phenol bileşiği deneysel ve kuramsal yöntemlerle incelenmiştir. Bileşiğin moleküler yapısı X-ışını kırınım yöntemiyle aydınlatılmıştır. Tüm kuramsal hesaplamalarda Yoğunluk Fonksiyonel Kuramı YFK Becke tipi 3-parametreli B3LYP /6-31G d,p baz seti ile hesaplanmıştır. X-ışını kırınımı sonuçları yapının enol-imin formda olduğunu öngörmüştür. Moleküler ve geometrik özellikler ise hem enol-imin hem de keto-amin formunda incelenmiştir. Hiperkonjuge etkişimi, yük delokalizasyonu ve hidrojen bağından kaynaklı molekül kararlılığı doğal bağ analizi NBO ile incelenmiştir. Mulliken popülasyon analizi ve doğal popülasyon analizi hesaplanmıştır. Bunlara ilave olarak Fukui fonksiyon analizi ve yük yardımıyla nükleofilik indisler orbital yük hesaplama methodu NPA kullanılarak incelenmiştir. Ayrıca Moleküler Elektrostatik Potansiyel haritası MEP ve ikinci dereceden lineer olmayan optik özellikler NLO hesaplanarak tartışılmıştır

X-ray and DFT Investigation of E -4-bromo-5-methoxy-2- o-tolylimino methyl phenol Compound

E -4-bromo-5-methoxy-2- o-tolylimino methyl phenol was investigated by experimental and theoretical methodologies. The solid state molecular structure was determined by X-ray diffraction method. All theoretical calculations were performed by density functional theory DFT method by using B3LYP/6-31G d,p basis set. The titled compound showed the preference of enol form, as supported by X-ray diffraction method. The geometric and molecular properties were compaired for both enol-imine and keto-amine forms for title compound. Stability of the molecule arises from hyperconjugative interactions, charge delocalization and intramolecular hydrogen bond has been analyzed using natural bond orbital NBO analysis. Mulliken population method and natural population analysis NPA have been studied. Also, condensed Fukui function and relative nucleophilicity indices calculated from charges obtained with orbital charge calculation methods NPA . Molecular electrostatic potential MEP and non linear optical NLO properties are also examined.

___

  • Ayers, PW., Parr, RG. 2000. Variational principles for describing chemical reactions: the fukui function and chemical hardness revisited. J. Am. Chem. Soc.,122(9): 2010-2018.
  • Boyle, NMO., Tenderholt, AL., Langer, KM. 2008. cclib: a library for package-independent computational chemistry algorithms. J. Comp. Chem., 29: 839–845.
  • Chattaraj, PK., Maiti, B., Sarkar, U. 2003. Philicity: a unified treatment of chemical reactivity and selectivity. J. Phys. Chem., A107: 4973–4975.
  • Chermette, H. 1999. Chemical reactivity indexes in density functional theory. J. Comp. Chem., 20: 129-154.
  • Dhar, DN., Taploo, CL. 1982. Schiff bases and their applications. J. Sci. Ind. Res., 41(8): 501–506.
  • Eaton, DF. 1991. Nonlinear optical materials. Sc., 253: 281–287.
  • Etter, MC. 1990. Encoding and decoding hydrogen-bond patterns of organic compounds. Acc. Chem. Res., 23(4): 120-126.
  • Gaussian, RA., Frisch, MJ., Trucks, GW., Schlegel, HB., Scuseria, GE., Robb, MA., Cheeseman, JR., Scalmani, G., Barone, V., Mennucci, B,. Petersson, GA. 2009. Gaussian. Inc., Wallingford CT.
  • Murray, JS., Sen, K., 1996. Molecular Electrostatic Potentials, Concepts and Applications, Elsevier, Amsterdam, pp 664.
  • Özek, A., Albayrak, Ç., Odabasoğlu, M., Büyükgüngör, O. 2007. Three (E)-2-[(bromophenyl)iminomethyl]-4- methoxyphenols. Acta Crystallogr. C, 63: o177.
  • Parr, RG., Yang, W. 1989. Functional Theory of Atoms and Molecules, Oxford University Press, New York, pp 333.
  • Shankar Rao, YB., Prasad, MVS., Udaya Sri, N., Veeraiah V. 2006. Vibrational (FT-IR, FT-Raman) and UV–Visible spectroscopic studies, HOMO–LUMO, NBO, NLO and MEP analysis of Benzyl (imino (1H-pyrazol-1-yl) methyl) carbamate using DFT calculaions. J. Mol. Struct., 1108: 567- 582.
  • Sheldrick, GM. 2008. A short history of SHELX. Acta Cryst. A: Found. Cryst., 64(1): 112-122.
  • Stoe, C. 2002. X-area (version 1.18) and X-red32 (version 1.04). Stoe & Cie, Darmstadt, Germany.
  • Sun, YX., Hao, QL., Wei, WX., Yu, Z.X., Lu, L.D., Wang, YS. 2009. Experimental and density functional studies on 4-(3, 4-dihydroxybenzylideneamino) antipyrine, and 4-(2, 3, 4-trihydroxybenzylideneamino) antipyrine.J. Mol. Struct., 904: 74–82.
  • Sylvestre, S., Sebastian, S. Edwin, S., Amalanathan, M., Ayyapan, S., Jayavarthanan, T., Oudayakumar, K., Solomon, S. 2014. Vibrational spectra (FT-IR and FT-Raman), molecular structure, natural bond orbital, and TD-DFT analysis of L-Asparagine Monohydrate by Density Functional Theory approach. Spect. Acta Part A: Mol. and Biom. Spect., 133: 190–200.
  • Yıldırım, MH., Pasaoğlu, H., Odabasoğlu, HY., Odabasoğlu, M., Özek Yıldırım, A., 2015. Synthesis, structural and computational characterization of 2-amino-3,5-diiodobenzoic acid and 2-amino-3,5-dibromobenzoic acid. Spect. Acta Part A: Mol. and Biom. Spect., 146: 50–60.
Karaelmas Fen ve Mühendislik Dergisi-Cover
  • ISSN: 2146-4987
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 2011
  • Yayıncı: ZONGULDAK BÜLENT ECEVİT ÜNİVERSİTESİ