Acı Badem Yağının Streptozotosin Kaynaklı Diyabetik Sıçanların Serum ve Eritrositlerindeki Bazı Biyokimyasal Parametreler Üzerindeki Etkileri

Diyabet çağımızın en önemli hastalıklarından biri olarak kabul edilmekte ve dünya genelinde milyonlarca insanı etkilemektedir. Bitkisel kaynaklı ilaçlarla diyabeti tedavi etme çalışmaları yıllardır sürmektedir. Bu çalışmada acı badem yağının deneysel olarak diyabet oluşturulan sıçanların canlı ağırlık ve açlık kan glukoz seviyeleri ile serum ve eritrositlerinde yağda çözünen vitaminler, kolesterol, steroller, GSH, total protein ve MDA düzeyleri üzerinde etkilerinin incelenmesi amaçlandı. 30 adet 8–10 haftalık Wistar erkek sıçan rasgele 3 gruba ayrıldı: 1. Kontrol K 1mL/kg DMSO haftada iki kez , 2. Diyabet D 45 mg/kg streptozotosin tek doz + 1mL/kg DMSO haftada iki kez , 3. Diyabet + Acı Badem D+AB 45 mg/kg streptozotosin tek doz + 1mL/kg acı badem yağı her gün . Sonuçlarımıza göre, D grubu ile karşılaştırıldığında, D+AB grubunda açlık kan glukoz düzeyinin anlamlı derecede azalarak K grubu değerlerine yaklaştığı belirlendi. Ayrıca D grubu ile karşılaştırıldığında D+AB grubunun serumunda MDA düzeyinin azaldığı, eritrositlerde ise MDA düzeyinin anlamlı düzeyde arttığı, GSH düzeyinin ise önemli düzeyde artarak kontrol grubu değerlerine yaklaştığı gözlendi. Kolesterol miktarının serum ve eritrositlerde acı badem yağı verilen grupta D grubuna göre azaldığı saptandı. Sonuç olarak acı badem yağı verilen grupta açlık kan şekeri seviyesinin azaldığı gözlenmiştir. Özellikle diyabetik sıçanların serum ve eritrositlerinde kolesterol seviyesinin acı badem yağı uygulaması sonucunda azaldığı gözlenmiştir. Fakat bu durumun sebeplerinin daha iyi anlaşılabilmesi için ileri seviyelerde çalışmalar yapılması önerilebilir

Effects of Bitter Almond Oil on Some Biochemical Parameters in the Serum and Erythrocytes of Streptozotocin-Induced Diabetic Rats

Diabetes is recognized as one of the most important diseases of our time, and it affects millions of people across the globe. The works of treat diabetes with plant-derived drugs continue for many years. In this study, we aimed to examine effects of the bitter almond oil on the live weight, fasting blood glucose levels and lipid-soluble vitamins, cholesterol, sterols, GSH, total protein and MDA levels in the serum and erythrocytes of Wistar rats, which forming experimental diabetes. 30 Wistar rats, 8-10 weekly aged, were randomly divided into three groups: 1. Control K 1mL/kg DMSO twice a week , 2. Diabetes D 45 mg/kg streptozotocin single dose + 1mL/kg DMSO twice a week , 3. Diabetes + Bitter Almond D+AB 45 mg/kg streptozotocin single dose + 1mL/kg bitter almond oil every day . According to our results, the fasting blood glucose level was significantly decreased and it was closed to the control group values in the D+AB group when compared to the D group. Also, when compared to the D group, the MDA level was significantly decreased in the serum of the D+AB group, its level was significantly increased in the erythrocytes of the same group, and the GSH level was significantly increased and it was closed to the control group values in the same group. The cholesterol level was decreased in the bitter almond given group when compared to the D group. In conclusion, it was observed that the fasting blood glucose level was decreased in the bitter almond oil given group. Particularly the cholesterol level was decreased in the serum and erythrocytes of the diabetic rats as a result of administration of the bitter almond oil. However, it can be suggested that the new advanced level studies may be do for better understanding of the reasons of this situation.

___

  • Ahmed, I., Adeghate, E., Cummings, E., Sharma, AK., Singh, J. 2004. Beneficial effects and mechanism of action of Momordica charantia juice in the treatment of streptozotocin-induced diabetes mellitus in rat. Mol. Cell Biochem., 261(1-2):63–70.
  • Akerboom, TP., Sies, H. 1981. Assay of glutathione, glutathione disulfide, and glutathione mixed disulfides in biological samples. Methods Enzymol., 77:373-82.
  • Alhaider, AA., Korashy, HM., Sayed-Ahmed, MM., Mobark, M., Kfoury, H., Mansour, M.A. 2011. Metformin attenuates streptozotocin-induced diabetic nephropathy in rats through modulation of oxidative stress genes expression. Chem. Biol. Interact., 192:233–242.
  • Arranz, S., Cert, R., Pérez-Jiménez, J., Cert, A., Saura-Calixto, F. 2008. Comparison between free radical scavenging capacity and oxidative stability of nut oils. Food Chem., 110:985–990.
  • Babujanarthanam, R., Kavitha, P., Mahadeva Rao, US., Pandian, MR. 2011. Quercitrin a bioflavonoid improves the antioxidant status in streptozotocin: induced diabetic rat tissues. Mol. Cell Biochem., 358:121–129.
  • Basu, T.K., Basualdo, C. 1997. Vitamin A homeostasis and diabetes mellitus. Nutrition, 13(9):804–806.
  • Baydar, SN. 2006. Şifalı bitkiler ansiklopedisi cilt 1. 1.Baskı, Palme Yayıncılık, Ankara.
  • Baynes, JW. 1991. Role of oxidative stress in development of complications in diabetes. Diabetes, 40:405–412.
  • Bragagnolo, N., Rodriguez-Amaya, DB. 2003. Comparison of the cholesterol content of Brazilian chicken and quail eggs. J. Food Comp. Anal., 16:147–153.
  • Choudhary, P., Kothari, S., Sharma, V. 2009. Almond consumption decreases fasting and post prandial blood glucose level in female type 2 diabetes subject. Am. J. Infect. Dis., 5(2):109–111.
  • Coskun, O., Kanter, M., Korkmaz, A., Oter, S. 2005. Quercetin, a flavonoid antioxidant, prevents and protects streptozotocin çeşitli fitokimyasalların insan sağlığına olan yararlı etkileri
  • Mori, AM., Considine, R.V., Mattes, R.D. 2011. Acute and second-meal effects of almond form in impaired glucose tolerant adults: a randomized crossover trial. Nutr. Metabol., 8(6):1–8.
  • Ohkawa, H., Ohishi, N., Yagi, K. 1979. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem., 95(2):351–358.
  • Özcan, M.M., Ünver, A., Erkan, E., Arslan, D. 2011. Characteristics of some almond kernel and oils. Sci. Hortic., 127:330–333.
  • Ramesh, B., Pugalendi, KV. 2006. Antioxidant role of umbelliferone in STZ-diabetic rats. Life Sci., 79:306–310.
  • Rayalam, S., Della-Fera, MA., Baile, CA. 2008. Phytochemicals and regulation of the adipocyte life cycle. J. Nutr. Biochem., 19:717–726.
  • Scoggan, KA., Gruber, H., Chen, Q., Plouffe, LJ., Lefebvre, JM., Wang, B., Bertinato, J., L’Abbé, MR., Hayward, S., Ratnayake, WM. 2009. Increased incorporation of dietary plant sterols and cholesterol correlates with decreased expression of hepatic and intestinal Abcg5 and Abcg8 in diabetic BB rats. J. Nutr. Biochem., 20:177–186.
  • Scoppola, A., Testa, G., Frontoni, S., Maddaloni, E., Gambardella, S., Menzinger, G., Lala, A. 1995. Effects of insulin on cholesterol synthesis in type II diabetes patients. Diabetes Care, 10:1362–1369.
  • Shragg, TA., Albertson, TE., Fisher, CJJr. 1982. Cyanide poisoning after bitter almond ingestion. West J. Med., 136(1):65–69.
  • Singh, SN., Vats, P., Suri, S., Shyam, R., Kumria, MM., Ranganathan, S., Sridharan, K. 2001. Effect of an antidiabetic extract of Catharanthus roseus on enzymic activities in streptozotocin induced diabetic rats. J. Ethnopharmacol., 76:269–277.
  • Torres, MD., Canal, JR., Pérez, C. 1999. Oxidative stress in normal and diabetic rats. Physiol. Res, 48(3):203–208.
  • Tuitoek, PJ., Ritter, SJ., Smith, JE., Basu, TK. 1996. Streptozotocin-induced diabetes lowers retinol-binding protein and transthyretin concentrations in rats. Brit. J. Nutr., 76(6):891–897.
  • Tuzlacı, E., Şenkardeş, İ. 2011. Turkish folk medicinal plants, X: Ürgüp (Nevşehir). Marmara Pharmaceut. J., 15:58–68.
  • Wang, L., Zhang, X.T., Zhang, H.Y., Yao, H.Y., Zhang, H. 2010. Effect of Vaccinium bracteatum Thunb. leaves extract on blood glucose and plasma lipid levels in streptozotocin-induced diabetic mice. J. Ethnopharmacol., 130:465–469.
  • Yang, C., Yu, L., Li, W., Xu, F., Cohen, J.C., Hobbs, HH. 2004. Disruption of cholesterol homeostasis by plant sterols. J. Clin. Invest., 114(6):813–822.
  • Zhao, H.W., Haddad, G.G. 2011. Review: Hypoxic and oxidative stress resistance in Drosophila melanogaster. Placenta, 32(Suppl 2):104–108.
  • Zhao, Y. 2012. Amygdalin content in four stone fruit species at different developmental stages. Sci. Asia, 38:218–222.