Ters Atom Transfer Radikal Polimerizasyon Yöntemi ile Polietilen Glikol ve Polimetil Metakrilat İçeren Çok Dallı Ya Da Çapraz Bağlı Kopolimerlerin Sentezi ve Karakterizasyonu

Bu çalışmada, ters atom transfer radikal polimerizasyonu (RATRP) metodu kullanılarak polietilen glikol (PEG) ve polimetil metakrilat (PMMA) bloklarını içeren çok dallı ya da çapraz bağlı kopolimerlerin sentezi gerçekleştirildi. Bunun için öncelikle, 4,4'-azobis(4-siyanopentanoik asit) ile fosfor pentaklorür reaksiyona sokularak 4,4'-azobis(4-siyanopentanoil klorür) (ACPC) elde edildi. Sentezlenen ACPC ile çeşitli molekül ağırlığına sahip PEG’ler (400 g.mol-1, 600 g.mol-1, 1000 g.mol-1, 1500 g.mol-1 ve 2000 g.mol-1) reaksiyona sokularak uç kısımlarında polietilen glikol içeren poliazoesterin (PAE) sentezi gerçekleştirildi. Elde edilen PAE ile metakriloil klorürün tepkimesinden metakriloil son uçlarına sahip polietilen glikol azoesterin (PAE-dimetakrioil) eldesi yapıldı. Ayrıca PAE ile 4-vinil benzil klorürün tepkimesinden 4-vinil benzil son uçlarına sahip polietilen glikol azoesterin (PAE-diVB) eldesi başarıldı. Son olarak PAE-dimetakrioil ve PAE-diVB kullanılarak metil metakrilatın RATRP ile çok dallı ya da çapraz bağlı kopolimerler sentezlendi. Sentezlenen ürünler FT-IR, 1H-NMR ve şişme değerleri (qv) teknikleri ile karakterilize edildi.

Synthesis and Characterization of The Hyper-Branched or Cross-Linked Copolymers Including Polyethylene Glycol and Polymethyl Methacrylate by Reverse Atom Transfer Radical Polymerization Method

In this study, the synthesis of hyper-branched or cross-linked copolymers containing polyethylene glycol (PEG) and polymethyl methacrylate (PMMA) blocks was carried out using the reverse atom transfer radical polymerization (RATRP) method. For this, firstly, 4,4'-azobis (4-cyanopentanoic acid) was reacted with phosphorus pentachloride to obtain 4,4'-azobis (4-cyanopentanoyl chloride) (ACPC). By reacting PEGs of various molecular weights (400 g.mol-1, 600 g.mol-1, 1000 g.mol-1, 1500 g.mol-1 and 2000 g.mol-1) and synthesized ACPC, the synthesis of the polyazoester containing polyethylene glycol end groups (PAE) was carried out. By reacting obtained PAE and methacryloyl chloride, polyethylene glycol azoester possessing methacryloyl end groups (PAE- methacryloyl) was obtained. Additionally, it was achieved to obtain polyethylene glycol azoester with 4-vinyl benzyl end groups (PAE-diVB) from the reaction of 4-vinyl benzyl chloride with PAE. Finally, hyper-branched or cross-linked copolymers were synthesized by RATRP of methyl methacrylate using PAE- methacryloyl and PAE-diVB. The synthesized products were characterized by FT-IR, 1H-NMR, and swelling value (qv) techniques.

___

  • Öztürk, T., and Çakmak, İ. (2008). Synthesis of poly(ethylene glycol-b-styrene) block copolymers by reverse atom transfer radical polymerization. Journal of Polymer Research, 15, 241-247.
  • Wang, J. S., and Matyjaszewski, K. (1995). Controlled/"living" radical polymerization. halogen atom transfer radical polymerization promoted by a Cu(I)/Cu(II) redox process. Macromolecules, 28, 7901-7910.
  • Savaş, B., and Öztürk, T. (2023). Synthesis and characterization of poly(epichlorohydrin‑g‑4‑vinylbenzyl‑g‑methyl methacrylate) graft copolymer by combination of ROP, RAFT, and ATRP technics. Journal of Polymer Research, 30:211.
  • Öztürk, T., Yavuz, M., Göktaş, M., and Hazer, B. (2016). One-step synthesis of triarm block copolymers by simultaneous atom transfer radical and ring opening polymerization. Polymer Bulletin, 73, 1497-1513.
  • Tunca, U., Erdogan, T., and Hizal, G. (2002). Synthesis and characterization of well-defined ABC-type triblock copolymers via atom transfer radical polymerization and stable free-radical polymerization. Journal of Polymer Science Part A: Polymer Chemistry, 40, 2025-2032.
  • Meyvacı, E., Çatıker, E., and Öztürk, T. (2023). Synthesis and Characterization of Poly(β-Propiolactone)-b-Poly(methyl methacrylate) Tri-arm Block Copolymer Using Atom Transfer Radical Polymerization, Karadeniz Fen Bilimleri Dergisi / The Black Sea Journal of Sciences, 13(3), 882-893.
  • Ruzette, A. V., and Leibler, L. (2005). Block copolymers in tomorrow's plastics. Nature Materials, 4, 19-31.
  • Altintas, O., Tunca, U., and Barner-Kowollik, C. (2011). Star and miktoarm star block (co)polymers via self-assembly of ATRP generated polymer segments featuring Hamilton wedge and cyanuric acid binding motifs. Polymer Chemistry, 2, 1146-1155.
  • Meyvacı, E., and Öztürk T. (2022). Modification of poly(styrene-co-acrylonitrile) with tetrazine by Inverse Electron Demand Diels-Alder Reaction. ChemistrySelect, 7, e202200668.
  • Öztürk, T., and Türkoğlu, H. (2022). Synthesis and characterization of the graft copolymer including polyβ-butyrolactone and polyvinyl chloride by ring-opening polymerization and “click” chemistry. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 59, 871-878.
  • Öztürk, T., and Cavicchi, C. A. (2018). Synthesis and characterization of poly(epichlorohydrin-g-ε-caprolactone) graft copolymers by "click" chemistry. Journal of Polymer Materials, 35, 209-220.
  • Yigit, N. C., Hizal, G., and Tunca, U. (2018). A powerful tool for preparing peripherally post-functionalized multiarm star block copolymer. Polymer Bulletin, 75, 3523-3538.
  • Dag, A., Aydin, M., Durmaz, H., Hizal, G., and Tunca, U. (2012). Various polycarbonate graft copolymers via Diels-Alder click reaction. Journal of Polymer Science Part A: Polymer Chemistry, 50, 4476-4483.
  • Öztürk, T., and Hazer, B. (2010). Synthesis and characterization of a novel macromonomer initiator for reversible addition fragmentation chain transfer (RAFT). Evaluation of the polymerization kinetics and gelation behaviors, Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 47, 265-272.
  • Çolakoğlu, G. N., Çatıker, E., Öztürk, T., and Meyvacı, E. (2022). Synthesis and characterization of brush-type polyβ-alanine-grafted polymethyl methacrylate using "grafting through" method, Chemical Papers, 76, 869-878.
  • Öztürk, T., Savaş, B., Meyvacı, E., Kılıçlıoğlu, A., and Hazer, B. (2020). Synthesis and characterization of the block copolymers using the novel bifunctional initiator by RAFT and FRP technics: Evaluation of the primary polymerization parameters. Journal of Polymer Research, 27, 76.
  • Xie, M., Dang, J., Han, H., Wang, W., Liu, J., He, X., and Zhang, Y. (2008). Well-defined brush copolymers with high grafting density of amphiphilic side chains by combination of ROP, ROMP, and ATRP. Macromolecules, 41, 9004-9010.
  • Savaş, B., Çatıker, E., Öztürk, T., and Meyvacı, E. (2021). Synthesis and characterization of poly(methyl methacrylate-g-α-methyl-β-alanine) copolymer using “grafting through” method. Journal of Polymer Research, 28, 194.
  • Hazer, B., Ayas, A., Beşirli, N., Saltek, N., and Baysal, B. M. (1989). Preparation of ABCBA-type block copolymers by use of macro-initiators containing peroxy and azo groups. Die Makromolekulare Chemie, 190, 1987-1996.
  • Hazer, B., (1992.) New macromonomeric initiators (macro-inimers). II. Gelation in the bulk polymerization of styrene with macroinimers. Die Makromolekulare Chemie, 193, 1081-1086.
  • Çakmak, I., Hazer, B., and Yagci, Y. (1991). Polymerization of acrylamide by the redox system Ce (IV)-polyethylene glycol with azo groups. European Polymer Journal, 27, 101-103.
  • Hazer, B., Erdem, B., and Lenz, R. W. (1994). Styrene polymerization with some new macro or macromer initiators having PEG units. Journal of Polymer Science Part A: Polymer Chemistry, 32, 1739-1746.
  • Yıldız, U., Hazer, B., and Tauer, K. (2012). Tailoring polymer architectures with macromonomer azoinitiators. Polymer Chemistry, 3, 1107-1118.
  • Neugebauer, D., Zhang, Y., Pakula, T. (2006). Gradient graft copolymers derived from PEO-based macromonomers. Journal of Polymer Science Part A: Polymer Chemistry, 44, 1347-1356.
  • Ueda, A., and Nagai, S. (1984). Block copolymers derived from azobiscyanopentanoic acid. IV. Synthesis of a polyamide-polystyrene block copolymer, Journal of Polymer Science: Polymer Chemistry Edition, 22, 1611-1621.
  • Collins, E. A., Bares, J., and Billmeyer, F. W. Jr. (1973). Experiments in Polymer Science. John Wiley and Sons: New York.
  • Hamurcu, E., and Baysal, B. M. (1993). Interpenetrating polymer networks of poly(dimethylsiloxane): 1. Preparation and characterization. Polymer, 34, 5163-5167.
  • Hazer, B., and Baysal, B. M. (1986). Preparation of block copolymers using a new polymeric peroxycarbamate. Polymer, 27, 961-968.
Karadeniz Fen Bilimleri Dergisi-Cover
  • Yayın Aralığı: 4
  • Başlangıç: 2010
  • Yayıncı: Giresun Üniversitesi / Fen Bilimleri Enstitüsü
Sayıdaki Diğer Makaleler

İki Farklı Vermikültürün Marul (Lactuca sativa L.) Bitkisinin Gelişimi Üzerindeki Etkisi

Tuğba ÖZBUCAK, Selahattin ÖZBUCAK, İrem ÖZBUCAK, Alptekin ARISOY

Güneş Enerjisi Sistemlerinde Metasezgisel Algoritma Tabanlı Batarya Şarj Kontrolü Tasarımı

Abdullah KARABAŞ, Onur Ozdal MENGI, Kenan YANMAZ

Al 0.3 Ga 0.7 N/GaN HEMT Yapısı için QMSA Metodu Uygulanması

Ahmet BİLGİLİ, Ömer AKPINAR, Naki KAYA, Mustafa ÖZTÜRK

Ters Atom Transfer Radikal Polimerizasyon Yöntemi ile Polietilen Glikol ve Polimetil Metakrilat İçeren Çok Dallı Ya Da Çapraz Bağlı Kopolimerlerin Sentezi ve Karakterizasyonu

Nilgün ASAN, Temel ÖZTÜRK, Baki HAZER

Acı Su Koşullarında Avrupa Deniz Levreklerinde (Dicentrarchus labrax) Mycobacterium marinum Enfeksiyonu

Ezgi DİNÇTÜRK, Ttansel TANRIKUL

Covid-19 Pandemisinde Trabzon İli Tıbbi Atık Verilerinin Değerlendirilmesi

Seda FANDAKLI, Büşra ATAR, Fatih Mehmet ATEŞ

Primula auriculata Lam. Türünün Vejetatif Organlarının Anatomik Özellikleri

Öznur ERGEN AKÇİN, Şükran ÖZTÜRK, Gülcan ŞENEL

Kimyasal Çöktürme Yöntemiyle Persülfat Aktivasyonu için Aktif Karbon Destekli Demir ve Kobalt Bazlı Katalizör Sentezi ve Eritromisin Degradasyonu için Uygulaması

Hatice ERDEM, Mehmet ERDEM

Parçikan Bitümlü Şeylinin Termal Analiz Kinetiği ve Reaksiyon Mekanizması

Yeliz TOPTAŞ, Aydan AKSOĞAN KORKMAZ

Ag/pentasen/Cu MIM Yapısının Optoelektronik Özelliklerinin İncelenmesi

Fatih ÜNAL