Sm2O3 Nadir Toprak Oksit Katkılı Al2O3 Seramiklerinin Mikro Yapısının ve Eğilme Dayanımının İncelenmesi: Hacim Oranlarının ve Sinterleme Sıcaklıklarının Etkisi
Düşük miktarlarda (0, 0,1, 0,3, 0,5, 0,8, 1, 2 hac.%) Sm2O3'ün Al2O3'ün yoğunlaşma, mikroyapı ve eğilme dayanımı üzerindeki etkileri farklı sinterleme sıcaklıkları için incelenmiştir. Sm2O3 ve Al2O3 tozları bilyeli öğütme ile karıştırılmış ve Al2O3-Sm2O3 seramikleri, ayrı ayrı 1550°C'de ve 1600°C/2 saat havada basınçsız sinterlemeden önce disk formunda kuru ve soğuk izostatik presleme ile hazırlanmıştır. Sm2O3, Al2O3 ile reaksiyona girerek SmAlO3 oluşturmuştur. SmAlO3'ün çubuk benzeri morfolojisi, 1600°C'de sinterleme için genel olarak hacimce %0,8 ve 1 Sm2O3 için elde edilirken, 1550°C'de sinterlenen numunelerde çubuk benzeri form daha belirgin olmuştur. Her iki sinterleme sıcaklığında da tüm Sm2O3 oranları için benzer relatif yoğunluklar elde edilmiştir ancak 1550°C'de sinterlenen Al2O3, 1600°C'de sinterlenen Al2O3’e göre daha yüksek yoğunlaşma sergilemiştir. 1600°C'de sinterlenen hac.%0,5 Sm2O3 içeren seramiklerde, Al2O3'e göre daha yüksek yoğunlaşma sebebiyle yaklaşık %5'lik bir mukavemet artışı elde edilirken, mukavemet değerleri genelde birbirine yakın olmuştur. Mukavemet, 1550°C'de sinterleme için hac.%0,1 Sm2O3 oranının üzerinde belirgin bir düşüş göstermiştir. Mevcut miktarlarda Sm2O3 ilavesinin Al2O3'ün mekanik özellikleri üzerinde önemli bir etkisi olmamıştır, ancak mikroyapıyı değiştirmiştir.
Exploring Microstructure and Bending Strength of Al2O3 Ceramics Doped with Sm2O3 Rare-Earth Oxide: Impact of Volume Ratios and Sintering Temperatures
The effects of low amounts (0, 0.1, 0.3, 0.5, 0.8, 1, 2vol%) of Sm2O3 on the densification, microstructure, and bending strength of Al2O3 were studied for different sintering temperatures. Sm2O3 and Al2O3 powders were mixed by ball milling, and Al2O3-Sm2O3 ceramics were prepared by dry and cold isostatic pressing in disc form before pressureless sintering at 1550°C and 1600°C/2 h in the air, separately. Sm2O3 reacted with Al2O3 by forming SmAlO3. The rod-like morphology of the SmAlO3 was generally achieved for 0.8 and 1vol% Sm2O3 for sintering at 1600°C, whereas the rod-like form was more obvious for the samples sintered at 1550°C. Similar relative densities were attained for all Sm2O3 ratios at both sintering temperatures, but the Al2O3 sintered at 1550°C exhibited higher densification than the Al2O3 sintered at 1600°C. The strength values were close, while a strength increase of about 5% was obtained for 0.5 vol% Sm2O3 containing ceramics sintered at 1600°C caused by the higher densification compared to the Al2O3. The strength showed a prominent drop above the ratio of 0.1 vol% Sm2O3 for sintering at 1550°C. The addition of present amounts of Sm2O3 did not have a significant effect on the mechanical properties of Al2O3 but it changed the microstructure.
___
- Aktas, B., Tekeli, S., and Kucuktuvek, M. (2014). Grain growth and sinterability in Er2O3-doped cubic zirconia (c-ZrO2). International Journal of Materials Research, 105,2,208-214.
https://doi.org/10.3139/146.110999.
- Aktas, B., Tekeli, S., and Salman, S. (2014). Synthesis and Properties of La2O3-Doped 8 mol% Yttria-Stabilized Cubic Zirconia. Journal of Materials Engineering and Performance, 23,294–301. https://doi.org/10.1007/s11665-013-0736-3.
- Aktas, B., Tekeli, S., and Salman, S. (2016). Improvements in microstructural and mechanical properties of ZrO2 ceramics after addition of BaO. Ceramics International, 42, 3849–3854. http://dx.doi.org/10.1016/j.ceramint.2015.11.049.
- Dresch, A. B., Venturini, J., and Bergmann, C. P. (2021). Improving the flexural-strength-to-density ratio in alumina ceramics with the addition of silicon nitride. Ceramics International, 47,3964–3971. https://doi.org/10.1016/j.ceramint.2020.09.260
- Feng, L., Fahrenholtz, W. G., Hilmas, G. E., Watts, J., and Zhou, Y. (2019). Densification, microstructure, and mechanical properties of ZrC–SiC ceramics. Journal of the American Ceramic Society, 102, 5786–5795. https://doi.org/10.1111/jace.16505
- Flinders, M., Ray, D., Anderson, A., and Cutler, R. A. (2005). High-toughness silicon carbide as armor. Journal of the American Ceramic Society, 88, 2217–2226. https://doi.org/10.1111/j.1551-2916.2005.00415.x
- Ge, X. Z, Ge, Q., Ge, X. S., Ji, D. H., Huang, Y., Zhang, Z. L., and Zhang, H. B. (2019). Influence of La2O3 Addition on Microstructure and Mechanical Properties of Al2O3 Ceramics. Materials Science Forum Volume, 956, 69-77. https://doi.org/10.4028/www.scientific.net/MSF.956.69
- Harun, Z., Ismail, N., and Badarulzaman, N. (2012). Effect of MgO additive on microstructure of Al2O3, Advanced Materials Research, 335-339.https://doi.org/10.4028/www.scientific.net/AMR.488-489.335
- Hazell, P. J., (2016). Armour: materials, Theory, and Design (1st ed.). Boca Raton: CRC Press.
- Huang, C. Y., and Chen, Y. L. (2016). Effect of mechanical properties on the ballistic resistance capability of Al2O3-ZrO2 functionally graded materials. Ceramics International, 42,12946–12955. https://doi.org/10.1016/j.ceramint.2016.05.067
- Kafkaslıoğlu Yıldız, B., and Tür, Y. K. (2021). Effect of ZrO2 content on the microstructure and flexural strength of Al2O3–ZrO2 composites with the stored failure energy-fragmentation relations. Ceramics International, 47, 34199–34206. https://doi.org/10.1016/j.ceramint.2021.08.329
- Kambale, K. R. Mahajan, A., and Butee, S. P. (2019). Effect of grain size on the properties of ceramics, Metal Powder Report, Volume 74, 3. https://doi.org/10.1016/j.mprp.2019.04.060
- Lartigue-Korinek, S., Carry, C., and Priester, L. (2002). Multiscale aspects of the influence of yttrium on microstructure, sintering and creep of alumina. Journal of the European Ceramic Society, 22, 1525-1541. https://doi.org/10.1016/S0955-2219(01)00471-X
- Londaitzbehere, L., Lartigue-Korinek, S., and Mazerolles, L. (2017). Microstructure, interfaces and creep behavior of Al2O3-Sm2O3 (ZrO2) eutectic ceramic composites. Journal of Materials Science, 52, 5489-5502. https://doi.org/10.1007/s10853-016-0726-6
- Ma, Y. H., Ouyang, J. H., Wang, Z. G., Hennich, A., Wang, Y. H., Wang, Y. J., and Liu, Z. G. (2019). Insights into intragranular precipitation and strengthening effect in Al2O3/SmAlO3 ceramic with eutectic composition. Materials Science & Engineering A, 754, 382–389. https://doi.org/10.1016/j.msea.2019.03.091
- Mizuno, M., Yamada, T., and Noguchi, T. (1977). Phase diagram of the system Al2O3-Sm2O3 at high Temperatures. Journal of the Ceramic Association Japan, 85, 374-379.
- Moazzam Hossen, M., Chowdhury, F. U. Z., Gafur, M. A., Abdul Hakim, A. K. M., and Nasrin, S. (2014). Investigation of mechanical properties of Al2O3-20wt%ZrO2 composites as a function of sintering temperature. European Scientific Journal, 10(9), 399-411. https://doi.org/10.19044/esj.2014.v10n9p%25p
- Rani, D. A., Yoshizawa, Y., Hirao, K., and Yamauchi, Y. (2004). Effect of Rare-Earth Dopants on Mechanical Properties of Alumina. Journal of the American Ceramic Society, 87(2)289–92. https://doi.org/10.1111/j.1551-2916.2004.00289.x
- Shi, S., Cho, S., Goto, T., and Sekino, T. (2020). Ti and SmAlO3 co-affected Al2O3 ceramics: Microstructure, electrical and mechanical properties. Journal of Alloys and Compounds, 835, 155427. https://doi.org/10.1016/j.jallcom.2020.155427
- Shuai, X., Zeng, Y., Li, P., and Chen, J. (2020). Fabrication of fine and complex lattice structure Al2O3 ceramic by digital light processing 3D printing technology. Journal of Materials Science, 55, 6771–6782. https://doi.org/10.1007/s10853-020-04503-y
- Tuan, W. H., Chen, J. R., and Ho, C. J. (2008). Critical zirconia amount to enhance the strength of alumina, Ceramics International, 34, 2129–2135. https://doi.org/10.1016/j.ceramint.2007.08.013
- Yijun, Y., Chuncheng, L., Ling, W., Xiaolong, J., and Tai, Q. (2010). Mechanical behaviors of alumina ceramics doped with rare-earth oxides. Rare Metals, 29, 456. https://doi.org/10.1007/s12598-010-0149-5