Bazı Magnezyum Alaşımlarında Sürünme Hızı, Termal İletkenlik ve Karışım Entalpisi Arasındaki İlişkinin İncelenmesi

Magnezyum (Mg) ve alaşımları, yüksek özgül güçleri ile bilinirler, ancak endüstriyel kullanım alanlarını genişletmek için ele alınması gereken sınırlamaları vardır. En büyük sınırlamalardan biri, yüksek sıcaklık performanslarıdır ve bu, havacılık gibi sürünme direncinin önemli olduğu endüstrilerde kullanılmaları için iyileştirme gerektirir. Bu çalışmada, ticari olarak kullanılan AZ serisi (AZ31, AZ61 ve AZ91) ve AM50, AX52 ve AE42 alaşımları dahil olmak üzere birçok Mg alaşımının sürünme davranışını inceledik. Bu alaşımların sürünme oranı ile iki malzeme özelliği arasındaki ilişkiyi inceledik: termal iletkenlik ve karıştırma entalpisi. Bu özellikleri analiz ederek, yeni geliştirilen veya mevcut alaşımları sürünme davranışları açısından karşılaştırabilir ve değerlendirebiliriz. Elde edilen sonuçlar genel olarak yorumlandığında, sürünme hızı, ısıl iletkenlik ve karışım entalpisi arasında genel bir eğilim olarak doğrusal bir ilişki bulunmuştur.

Investigating the Relationship Between Creep Rate, Thermal Conductivity and Enthalpy of Mixing in Some Magnesium Alloys

Magnesium (Mg) and its alloys are known for their high specific strength, but they have limitations that need to be addressed to expand their range of industrial use. One major limitation is their high temperature performance, which requires improvement for them to be used in industries such as aviation where creep resistance is important. In this study, we investigated the creep behavior of several Mg alloys, including the commercially used AZ series (AZ31, AZ61, and AZ91), as well as the AM50, AX52, and AE42 alloys. We studied the relationship between the creep rate of these alloys and two material properties: thermal conductivity and enthalpy of mixing. By analyzing these properties, we can compare and evaluate newly developed or existing alloys in terms of their creep behavior. When the obtained results are interpreted in general, a linear relationship is found between the creep rate, thermal conductivity and enthalpy of mixing as a general trend.

___

  • Abaspour, S., & Cáceres, C. H. (2015). Thermodynamics-Based Selection and Design of Creep-Resistant Cast Mg Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 46(12), 5972–5988. https://doi.org/10.1007/s11661-015-3128-5
  • Anand Sekhar, R., Samal, S., Nayan, N., & Bakshi, S. R. (2019). Microstructure and mechanical properties of Ti-Al-Ni-Co-Fe based high entropy alloys prepared by powder metallurgy route. Journal of Alloys and Compounds, 787, 123–132. https://doi.org/10.1016/j.jallcom.2019.02.083
  • Boyd, J. D., & Nicholson, R. B. (1971). The coarsening behaviour of θ″ and θ′ precipitates in two Al-Cu alloys. Acta Metallurgica, 19(12), 1379–1391. https://doi.org/10.1016/0001-6160(71)90076-9
  • Cáceres, C. H., & Rovera, D. M. (2001). Solid solution strengthening in concentrated Mg-Al alloys. Journal of Light Metals, 1(3), 151–156. https://doi.org/10.1016/S1471-5317(01)00008-6
  • Chen, T., Hu, S., Li, S., & Huo, Q. (2022). Uncovering the unexpected changes of creep properties in AZ-series Mg alloys. Materials Science and Engineering A, 857(September), 144056. https://doi.org/10.1016/j.msea.2022.144056
  • Dong, X., Feng, L., Wang, S., Wang, F., Ghasemi, R., Ji, G., Nyberg, E. A., & Ji, S. (2022). A quantitative strategy for achieving the high thermal conductivity of die-cast Mg-Al-based alloys. Materialia, 22(March), 101426. https://doi.org/10.1016/j.mtla.2022.101426
  • Gavras, S., Zhu, S., Easton, M. A., Gibson, M. A., & Dieringa, H. (2019). Compressive Creep Behavior of High-Pressure Die-Cast Aluminum-Containing Magnesium Alloys Developed for Elevated Temperature Applications. Frontiers in Materials, 6(October), 1–9. https://doi.org/10.3389/fmats.2019.00262
  • Gladman, T. (1999). Precipitation hardening in metals. Materials Science and Technology, 15(1), 30–36. https://doi.org/10.1179/026708399773002782
  • Hamu, G. Ben, Eliezer, D., & Wagner, L. (2009). The relation between severe plastic deformation microstructure and corrosion behavior of AZ31 magnesium alloy. Journal of Alloys and Compounds, 468(1–2), 222–229. https://doi.org/10.1016/j.jallcom.2008.01.084
  • Hort, N., Huong, Y., & Kainer, K. U. (2006). Intermetallics in magnesium alloys. Advanced Engineering Materials, 8(4), 235–240. https://doi.org/10.1002/adem.200500202
  • Ishimatsu, N., Terada, Y., Sato, T., & Ohori, K. (2006). Creep characteristics of a diecast AM50 magnesium alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 37(1), 243–248. https://doi.org/10.1007/s11661-006-0169-9
  • Jayasathyakawin, S., Ravichandran, M., Baskar, N., Chairman, C. A., & Balasundaram, R. (2020). Mechanical properties and applications of Magnesium alloy – Review. Materials Today: Proceedings, 27, 909–913. https://doi.org/10.1016/j.matpr.2020.01.255
  • Kaya, A. A. (2020). A Review on Developments in Magnesium Alloys. Frontiers in Materials, 7(August), 1–26. https://doi.org/10.3389/fmats.2020.00198
  • Kutty, T. R. G., Ganguly, C., & Sastry, D. H. (1996). Development of creep curves from hot indentation hardness data. Scripta Materialia, 34(12), 1833–1838. https://doi.org/10.1016/1359-6462(95)00686-9
  • Lee, S., Ham, H. J., Kwon, S. Y., Kim, S. W., & Suh, C. M. (2013). Thermal conductivity of magnesium alloys in the temperature range from -125 C to 400 C. International Journal of Thermophysics, 34(12), 2343–2350. https://doi.org/10.1007/s10765-011-1145-1
  • Li, G., Thomas, B. G., & Stubbins, J. F. (2000). Modeling creep and fatigue of copper alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 31(10), 2491–2502. https://doi.org/10.1007/s11661-000-0194-z
  • Liu, F., Xin, R., Wang, C., Song, B., & Liu, Q. (2019). Regulating precipitate orientation in Mg-Al alloys by coupling twinning, aging and detwinning processes. Scripta Materialia, 158, 131–135. https://doi.org/10.1016/j.scriptamat.2018.08.049
  • Liu, Y. F., Jia, X. J., Qiao, X. G., Xu, S. W., & Zheng, M. Y. (2019). Effect of La content on microstructure, thermal conductivity and mechanical properties of Mg–4Al magnesium alloys. Journal of Alloys and Compounds, 806, 71–78. https://doi.org/10.1016/j.jallcom.2019.07.267
  • Luo, Q., Guo, Y., Liu, B., Feng, Y., Zhang, J., Li, Q., & Chou, K. (2020). Thermodynamics and kinetics of phase transformation in rare earth–magnesium alloys: A critical review. Journal of Materials Science and Technology, 44, 171–190. https://doi.org/10.1016/j.jmst.2020.01.022
  • Majhi, J., & Mondal, A. K. (2019). Microstructure and impression creep characteristics of squeeze-cast AZ91 magnesium alloy containing Ca and/or Bi. Materials Science and Engineering A, 744(August 2018), 691–703. https://doi.org/10.1016/j.msea.2018.12.067
  • Maruyama, K., Suzuki, M., & Sato, H. (2002). Creep strength of magnesium-based alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 33(3), 875–882. https://doi.org/10.1007/s11661-002-0157-7
  • Nayeb-Hashemi, A. A., & Clark, J. B. (1985). The Mg-Mn (Magnesium-Manganese) system. Bulletin of Alloy Phase Diagrams, 6(2), 160–164. https://doi.org/10.1007/BF02869234
  • Nie, J. F., Shin, K. S., & Zeng, Z. R. (2020). Microstructure, Deformation, and Property of Wrought Magnesium Alloys. In Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science (Vol. 51, Issue 12). Springer US. https://doi.org/10.1007/s11661-020-05974-z
  • Nie, Jian Feng. (2012). Precipitation and hardening in magnesium alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 43(11), 3891–3939. https://doi.org/10.1007/s11661-012-1217-2
  • Okamoto, H. (2003). Al-Ca (Aluminum-Calcium). Journal of Phase Equilibria, 24(1), 91–91. https://doi.org/10.1361/105497103770331135
  • Okamoto, H. (2007). Al-La (aluminum-lanthanum). Journal of Phase Equilibria and Diffusion, 28(6), 581. https://doi.org/10.1007/s11669-007-9178-7
  • Okamoto, H. (2011). Al-Ce (Aluminum-Cerium). Journal of Phase Equilibria and Diffusion, 32(4), 392–393. https://doi.org/10.1007/s11669-011-9914-x
  • Pekguleryuz, M., & Celikin, M. (2010). Creep resistance in magnesium alloys. International Materials Reviews, 55(4), 197–217. https://doi.org/10.1179/095066010X12646898728327
  • Pekguleryuz, M. O., & Kaya, A. A. (2003). Creep resistant magnesium alloys for powertrain applications. Advanced Engineering Materials, 5(12), 866–878. https://doi.org/10.1002/adem.200300403
  • Pekguleryuz, M., & Vermette, P. (2009). Developing castability index for magnesium diecasting alloys. International Journal of Cast Metals Research, 22(5), 357–366. https://doi.org/10.1179/174313309X380396
  • Prameela, S. E., Yi, P., Medeiros, B., Liu, V., Kecskes, L. J., Falk, M. L., & Weihs, T. P. (2020). Deformation assisted nucleation of continuous nanoprecipitates in Mg–Al alloys. Materialia, 9(October 2019), 100583. https://doi.org/10.1016/j.mtla.2019.100583
  • Ramalingam, V. V., Ramasamy, P., Kovukkal, M. Das, & Myilsamy, G. (2020). Research and Development in Magnesium Alloys for Industrial and Biomedical Applications: A Review. Metals and Materials International, 26(4), 409–430. https://doi.org/10.1007/s12540-019-00346-8
  • Rometsch, P. A., Zhang, Y., & Knight, S. (2014). Heat treatment of 7xxx series aluminium alloys - Some recent developments. Transactions of Nonferrous Metals Society of China (English Edition), 24(7), 2003–2017. https://doi.org/10.1016/S1003-6326(14)63306-9
  • Rudajevová, A., Von Buch, F., & Mordike, B. L. (1999). Thermal diffusivity and thermal conductivity of MgSc alloys. Journal of Alloys and Compounds, 292(1–2), 27–30. https://doi.org/10.1016/S0925-8388(99)00444-2
  • Sakai, T., Nakata, T., Miyamoto, T., Kamado, S., & Liao, J. (2020). Tensile creep behavior of a die-cast Mg–6Al-0.2Mn–2Ca-0.3Si (wt.%) alloy. Materials Science and Engineering: A, 774(December 2019), 138841. https://doi.org/10.1016/j.msea.2019.138841
  • Sluiter, M. H. F., & Kawazoe, Y. (2002). Prediction of the mixing enthalpy of alloys. Europhysics Letters, 57(4), 526–532. https://doi.org/10.1209/epl/i2002-00493-3
  • Srinivasan, A., Swaminathan, J., Gunjan, M. K., Pillai, U. T. S., & Pai, B. C. (2010). Effect of intermetallic phases on the creep behavior of AZ91 magnesium alloy. Materials Science and Engineering A, 527(6), 1395–1403. https://doi.org/10.1016/j.msea.2009.10.008
  • Takeuchi, A., & Inoue, A. (2010). Mixing enthalpy of liquid phase calculated by miedema’s scheme and approximated with sub-regular solution model for assessing forming ability of amorphous and glassy alloys. Intermetallics, 18(9), 1779–1789. https://doi.org/10.1016/j.intermet.2010.06.003
  • Terada, Y., Ohkubo, K., Mohri, T., & Suzuki, T. (1997). Thermal conductivity in nickel solid solutions. Journal of Applied Physics, 81(5), 2263–2268. https://doi.org/10.1063/1.364254
  • Terada, Y., & Sato, T. (2007). Long Term Creep Properties of a Die-Cast Mg-Al-Ca Alloy. Materials Science Forum, 561–565, 163–166. https://doi.org/10.4028/www.scientific.net/msf.561-565.163
  • Trojanová, Z., Halmešová, K., Džugan, J., Drozd, Z., Minárik, P., & Lukáč, P. (2020). Effect of equal channel angular extrusion on the thermal conductivity of an ax52 magnesium alloy. Crystals, 10(6), 1–14. https://doi.org/10.3390/cryst10060497
  • Wang, C., Li, T. H., Liao, Y. C., Li, C. L., Jang, J. S. C., & Hsueh, C. H. (2019). Hardness and strength enhancements of CoCrFeMnNi high-entropy alloy with Nd doping. Materials Science and Engineering A, 764(July), 138192. https://doi.org/10.1016/j.msea.2019.138192
  • Wang, Y., Kang, H. jun, Guo, Y., Chen, H. tao, Hu, M. liang, & Ji, Z. sheng. (2022). Design and preparation of aluminum alloy with high thermal conductivity based on CALPHAD and first-principles calculation. China Foundry, 19(3), 225–237. https://doi.org/10.1007/s41230-022-1122-2
  • Webb, J., Gollapudi, S., & Charit, I. (2019). An overview of creep in tungsten and its alloys. International Journal of Refractory Metals and Hard Materials, 82(March), 69–80. https://doi.org/10.1016/j.ijrmhm.2019.03.022
  • Xiang, Z., Song, Y., Deng, B., Cui, E., Yu, L., & Lu, W. (2019). Enhanced formation and improved thermal stability of ferromagnetic τ phase in nanocrystalline Mn55Al45 alloys by Co addition. Journal of Alloys and Compounds, 783, 416–422. https://doi.org/10.1016/j.jallcom.2018.12.350
  • Xu, D. K., Liu, L., Xu, Y. B., & Han, E. H. (2006). The effect of precipitates on the mechanical properties of ZK60-Y alloy. Materials Science and Engineering A, 420(1–2), 322–332. https://doi.org/10.1016/j.msea.2006.01.092
  • Xu, T., Li, J., Xiao, R., Qin, J., Ruan, Y., & Li, H. (2022). The Mixing Enthalpy and Liquid Structural Properties of Ti–Al Alloys by ab inito Molecular Dynamics Simulation. Journal of Phase Equilibria and Diffusion, 43(5), 585–593. https://doi.org/10.1007/s11669-022-01015-x
  • Yang, X., & Zhang, Y. (2012). Prediction of high-entropy stabilized solid-solution in multi-component alloys. Materials Chemistry and Physics, 132(2–3), 233–238. https://doi.org/10.1016/j.matchemphys.2011.11.021
  • Yang, Y., Xiong, X., Chen, J., Peng, X., Chen, D., & Pan, F. (2021). Research advances in magnesium and magnesium alloys worldwide in 2020. Journal of Magnesium and Alloys, 9(3), 705–747. https://doi.org/10.1016/j.jma.2021.04.001
  • Yeh, J. W. (2015). Physical Metallurgy of High-Entropy Alloys. Jom, 67(10), 2254–2261. https://doi.org/10.1007/s11837-015-1583-5
  • Zha, M., Zhang, H. M., Wang, C., Wang, H. Y., Zhang, E. B., & Jiang, Q. C. (2017). Prominent role of a high volume fraction of Mg17Al12 particles on tensile behaviors of rolled Mg–Al–Zn alloys. Journal of Alloys and Compounds, 728, 682–693. https://doi.org/10.1016/j.jallcom.2017.08.289
  • Zhang, D., Zhang, J., Xu, T., Zhang, Y., Che, C., Zhang, D., & Meng, J. (2022). Significant improvement in creep property of a Mg–Yb based alloy via introducing nano-spaced stacking faults. Materials Science and Engineering A, 845(April), 143238. https://doi.org/10.1016/j.msea.2022.143238
  • Zhang, M., Hector, L. G., Guo, Y., Liu, M., & Qi, L. (2019). First-principles search for alloying elements that increase corrosion resistance of Mg with second-phase particles of transition metal impurities. Computational Materials Science, 165(12), 154–166. https://doi.org/10.1016/j.commatsci.2019.04.018
  • Zhang, Z., Zhang, J. huai, Wang, J., Li, Z. hua, Xie, J. shu, Liu, S. juan, Guan, K., & Wu, R. zhi. (2021). Toward the development of Mg alloys with simultaneously improved strength and ductility by refining grain size via the deformation process. International Journal of Minerals, Metallurgy and Materials, 28(1), 30–45. https://doi.org/10.1007/s12613-020-2190-1
  • Zheng, Q., Zhu, G., Diao, Z., Banerjee, D., & Cahill, D. G. (2019). High Contrast Thermal Conductivity Change in Ni–Mn–In Heusler Alloys near Room Temperature. Advanced Engineering Materials, 21(5), 1–10. https://doi.org/10.1002/adem.201801342
  • Zhu, S. M., Gibson, M. A., Nie, J. F., Easton, M. A., & Abbott, T. B. (2008). Microstructural analysis of the creep resistance of die-cast Mg-4Al-2RE alloy. Scripta Materialia, 58(6), 477–480. https://doi.org/10.1016/j.scriptamat.2007.10.041
  • Zhu, S. M., Nie, J. F., Gibson, M. A., Easton, M. A., & Bakke, P. (2012). Microstructure and creep behavior of high-pressure die-cast magnesium alloy AE44. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 43(11), 4137–4144. https://doi.org/10.1007/s11661-012-1247-9
Karadeniz Fen Bilimleri Dergisi-Cover
  • Başlangıç: 2010
  • Yayıncı: Giresun Üniversitesi / Fen Bilimleri Enstitüsü