Sulu çözeltiden Cu(II) iyonlarının uzaklaştırılması için çay fabrikası atıklarından üretilen düşük maliyetli yeni bir aktif karbon: Denge, kinetik ve termodinamik değerlendirme

Bu çalışmada, siyah çay üretimi esnasında ortaya çıkan atıklardan sülfürik asit kullanarak kimyasal aktivasyonla yeni bir aktif karbon üretildi ve sulu çözeltiden Cu(II) iyonlarının uzaklaştırılması için adsorpsiyon performansı test edildi. Yüksek maliyetli bir inert atmosfer-karbonizasyon fırınına ihtiyaç duyulmadan sadece basit bir laboratuvar fırını kullanarak yüksek adsorpsiyon kapasiteli ve düşük maliyetli bir aktif karbon üretildi. Sulu çözeltiden Cu(II) iyonlarının aktif karbon üzerinde adsorpsiyonu denge, kinetik ve termodinamik açıdan incelendi. Çalkalama modunda yapılan adsorpsiyon testlerinden sonra başlangıç çözelti pH’sı 5.0’a ve çalkalama süresi 4.0 saate optimize edildi. Aktif karbon üzerinde Cu(II) iyonlarının adsorpsiyon kinetiği yalancı ikinci mertebeden kinetik modele uyduğu ve Freundlich izoterm modelinin de adsorpsiyon verileriyle daha uyumlu olduğu tespit edildi. Doğrusal Langmuir izoterm modelinden aktif karbonun Cu(II) adsorpsiyon kapasitesinin 28.30 mg g–1 olduğu ve sıcaklığın 5 o C’den 40 o C’ye yükselmesiyle adsorpsiyon kapasitesinin neredeyse %50 oranında arttığı belirlendi. Bu sonuçlardan, her hangi bir alanda kullanılmayan ve çevreye atık olarak boşaltılan çay endüstrisi atıklarından neredeyse sıfır maliyetle üretilen aktif karbonun, sulu çözeltiden Cu(II) iyonlarını yüksek performansla uzaklaştırabileceği kanıtlandı.

A new low-cost activated carbon produced from tea-industry waste for removal of Cu(II) ions from aqueous solution: Equilibrium, kinetic and thermodynamic evaluation

In this study, a new activated carbon was produced by chemical activation using H2SO4 from the wastes generated during black tea production, and after characterization by various parameters, its adsorption performance was tested for removal of Cu(II) ions from aqueous solution. A low-cost activated carbon with high adsorption capacity was produced using only an oven without needing a high cost inert atmosphere-carbonization furnace. Characterization of the produced activated carbon was performed by parameters such as proximate ultimate analyzes, BET surface area, SEM images, FT-IR spectra. The adsorption of Cu(II) ions from aqueous solution on the activated carbon was investigated in terms of equilibrium, kinetics and thermodynamics. After the batch mode adsorption tests, the initial pH was optimized to 5.0 and the agitation time to 4.0 hours. The adsorption kinetics of Cu(II) ions on activated carbon were fitted with the psedudo-second order kinetic model, and the Freundlich isotherm model was more compatible with experimental data. It was determined that Cu(II) adsorption capacity of the activated carbon was 28.30 mg/g, and the adsorption capacity was increased by almost 50% by increasing the temperature from 5 to 40 oC. From the results, it has been proven that activated carbon produced from tea-industry waste, which have no use area and left as waste to the environment, at almost zero cost can remove Cu(II) ions from wastewaters with very high performance. 

___

  • 1. Bansal, R.C. and Goyal, M., Activated carbon adsorption, CRC Press, Taylor and Francis, London, 2005. 2. El-Hendawy, A. A., Surface and adsorptive properties of carbons prepared from biomass, Appl. Surf. Sci. 2005, 252, 287–295. 3. StrelkoJr., V., Malik, D. J. and Streat, M., Characterization of the Surface of Oxidised Carbon Adsorbents, Carbon 2002, 40, 95–104. 4. Gergova, K. and Eser, S., Effects of activation method the pore structure of activated carbons from apricot stone, Carbon 1996, 34, 879–888. 5. Bandosz, T. J., Effect of pore structure and surface chemistry of virgin activated carbons on removal of hydrogen sulfide, Carbon 1999, 37, 483–491. 6. Klass, D. L., Biomass for renewable energy, fuels and chemicals, Academic Press, California, USA, 1998. 7. Gerhartz, W. (Ed.), Ullmann's encyclopedia of industrial chemistry, VCH, Almanya, A5, 1986, 124–140. 8. Wigmans, T., Industrial aspects of the production and use of activated carbons, Carbon 1989, 27, 13–22. 9. Duran, C., Ozdes, D., Gundogdu, A., Imamoglu, M. and Senturk, H. B., Tea industry waste activated carbon, as a novel adsorbent, for separation, preconcentration and speciation of chromium, Anal. Chim Acta 2011, 688, 75–83. 10. Hayashi, J., Horikawa, T., Takeda, I., Muroyama, K. and Ani, F. N., Preparing activated carbon from various nutshells by chemical activation with K2CO3, Carbon 2002, 40, 2381–2386. 11. Gao, X., Wu, L., Xu, Q., Tian, W., Li, Z. and Kobayashi, N., Adsorption kinetics and mechanisms of copper ions on activated carbons derived from pinewood sawdust by fast H3PO4 activation, Environ. Sci. Pollut. R. 2018, in press, doi:10.1007%2Fs11356-017-1079–7. 12. Imamoglu, M., Ozturk, A., Aydın, Ş., Manzak, A., Gündoğdu, A. and Duran, C., Adsorption of Cu(II) ions from aqueous solution by hazelnut husk activated carbon prepared with potassium acetate, J. Disper. Sci. Technol. 2018, in press., doi: 10.1080/01932691.2017.1385479. 13. Demiral, H. and Güngor, C., Adsorption of copper(II) from aqueous solutions on activated carbon prepared from grape bagasse, J. Clean. Prod. 2016, 124, 103–113. 14. Shou, J. and Qiu, M., Adsorption of copper ions onto activated carbon from capsicum straw, Desalin. Water Treat. 2016, 57, 353–359. 15. Soylak, M., Acar, D. and Alothman, Z. A., Activated carbon cloth (ACC) as efficient adsorbent for trace Cu(II), Co(II), Cd(II), Pb(II), Mn(II), and Ni(II) as 0-0-diethylphosphorodithioic acid chelates for the enrichment from water and soil samples, Atom. Spectros. 2017, 38, 65–70. 16. Guardia M. and Garrigues, S., Handbook of mineral elements in food, John Wiley & Sons, Ltd., 2015. 17. Sarı, A., Tuzen, M., Cıtak, D. and Soylak, M., Adsorption characteristics of Cu(II) and Pb(II) onto expanded perlite from aqueous solution, J. Hazard. Mater. 2007, 148, 387–394. 18. Gündoğan, R., Acemioğlu, B. and Alma, M. H., Copper(II) adsorption from aqueous solution by herbaceous peat, J. Colloid Interface Sci. 2004, 269, 303–309. 19. Lata, H., Garg, V. K. and Gupta, R. K., Adsorptive removal of basic dye by chemically activated parthenium biomass: equilibrium and kinetic modeling, Desalination 2008, 219, 250–261. 20. Lata, H., Garg, V. K. and Gupta, R. K., Sequestration of nickel from aqueous solution onto activated carbon prepared from Parthenium hysterophorus L., J. Hazard. Mater. 2008, 157, 503–509. 21. Singh, C.K., Sahu, J. N., Mahalik, K. K., Mohanty, C. R., Mohan, B. R. and Meikap, B. C., Studies on the removal of Pb(II) from wastewater by activated carbon developed from Tamarind Wood activated with sulphuric acid, J. Hazard. Mater. 2008, 153, 221–228. 22. Lagergren, S., About the theory of so-called adsorption of soluble substance, Kungliga Svenska Veterskopsakademiens Handlinga, 1898, 24, 1–39. 23. Yavuz, Ö., Altunkaynak, Y. and Güzel, F., Removal of copper, nickel, cobalt and manganese from aqueous solution by kaolinite, Water Res. 2003, 37, 948–952. 24. Ho, Y. S. and McKay, G., Kinetic models for the sorption of dye from aqueous solution by wood, J. Environ. Sci. Heal. B 1998, 76, 183–191. 25. Mall, I. D. and Srivastava, V. C., Adsorptive removal of malachite green dye from aqueous solution by bagasse fly ash and activated carbon – kinetic study and equilibrium isotherm Analyses, Colloid. Surface. A 2005, 264, 17–28. 26. Kavitha, D. and Namasivayam, C., Capacity of activated carbon in the removal of acid brilliant blue: determination of equilibrium and kinetic model parameters, Chem. Eng. J. 2008, 139, 453–461. 27. Gupta, G. S., Prasad, G. and Singh, V. N., Removal of chrome dye from aqueous solutions by mixed adsorbents: Fly ash and coal, Water Res. 1990, 24, 45–50. 28. Orumwense, F. F. O., Removal of lead from water by adsorption on a kaolinitic clay, J. Chem. Technol. Biotechnol. 1996, 65, 363–369. 29. Gundogdu, A., Duran, C., Senturk, H. B., Soylak, M., Ozdes, D., Serencam, H. and Imamoglu, M., Adsorption of phenol from aqueous solution on a low-cost activated carbon produced from tea-industry waste: Equilibrium, kinetic, and thermodynamic study, J. Chem. Eng. Data 2012, 57, 2733–2743. 30. Qada, E. N. E., Allen, S. J. and Walker, G. M., Adsorption of methylene blue onto activated carbon produced from steam activated bituminous coal: A study of equilibrum Adsorption isotherm, Chem. Eng. J. 2006, 124, 103–110. 31. Langmuir, I., The adsorption of gases on plane surfaces of glass, mica, and platinum, J. Am. Chem. Soc. 1918, 40, 1361–1403. 32. Adamson, A. W., Physical chemistry of surfaces, 2nd edition, New York, Interscience, 1967. 33. Freundlich, H. M. F., Über die adsorption in Lösungen, Zeitschrift für Physikalische Chemie, 1906, 57, 385–470. 34. Atkins, P. and dePaula, J., Physical chemistry, Oxford University Press, Eight edition, 2006. 35. Puziy A. M., Poddubnaya O. I., Martinez-Alonso A., Suarez Garcia F., Tascon J. M. D., Surface chemistry of phosphorus – containing carbons of lignocellulosic origin, Carbon 2005, 43, 2857–2868. 36. Mohan, D., Pittman Jr., C. U., Bricka, M., Smith, F., Yancey, B., Mohammad, J., Steele, P.H., Alexandre-Franco, M. F., Gómez- Serrano, V. and Gong, H., Sorption of arsenic, cadmium, and lead by chars produced from fast pyrolysis of wood and bark during bio-oil production, J. Colloid Interface Sci. 2007, 310, 57–73. 37. Bae Jr., C. F. and Mesmer, R. E., The hydrolysis of cations, Wiley, New York, 1976. 38. Burgess, J., Metal ions in solution, Ellis Horwood, New York, 1978. 39. Bailey, S. E., Olin, T. J., Bricka, R. M. and Adrian, D. D., A review of potentially low-cost sorbents for heavy metals, Water Res. 1999, 33, 2469–2479. 40. Rao, M. M., Rao, G. P. C., Seshaiah, K., Choudary, N. V. and Wang, M. C., Activated carbon from Ceiba pentandra hulls, an agricultural waste, as an adsorbent in the removal of lead and zinc from aqueous solutions, Waste Manage. 2008, 28, 849–858. 41. Faur-Brasquet, C., Reddad, Z., Kadirvelu, K. and Cloirec, P., Modeling the adsorption of metal ions (Cu2+, Ni2+, Pb2+) onto ACCs using surface complexation models, Appl. Surf. Sci 2002, 196, 356–365. 42. Shubha, K. P., Raji, C. and Anirudhan, T. S., Immobilization of heavy metals from aqueous solutions using polyacrylamide grafted hydrous tin (IV) oxide gel having carboxylate functional groups, Water Res. 2001, 35, 300–310. 43. Kadirvelu, K., Senthilkumar, P., Thamaraiselvi, K. and Subburam, V., Activated carbon prepared from biomass as adsorbent: Elimination of Ni(II) from aqueous solution, Biores. Technol. 2002, 81, 87–90. 44. Serencam, H., Gundogdu, A., Uygur, Y., Kemer, B., Bulut, V.N., Duran, C., Soylak, M. and Tufekci, M., Removal of cadmium from aqueous solution by Nordmann fir (Abies nordmanniana (Stev.) Spach. Subsp. Nordmanniana) leaves, Biores. Technol. 2008, 99, 1992–2000. 45. Cheung, W. H., Szeto, Y. S. and McKay, G., Intraparticle diffusion processes during acid dye adsorption onto chitosan, Biores. Technol. 2007, 98, 2897–2904. 46. Calvete, T., Lima, E. C., Cardoso, N. F., Dias, S. L. P. and Pavan, F. A., Application of carbon adsorbents prepared from the Brazilian pine-fruit-shell for the removal of procion Red MX 3B from aqueous solution—Kinetic, equilibrium, and thermodynamic studies, Chem. Eng. J. 2009, 155, 627–636. 47. Li, K., Zheng, Z., Huang, X., Zhao, G., Feng, J. and Zhang, J., Equilibrium, kinetic and thermodynamic studies on the adsorption of 2-nitroaniline onto activated carbon Prepared from cotton stalk fibre, J. Hazard. Mater. 2009, 166, 213–220. 48. Sharma, D. C. and Forster, C. F., Removal of hexavalent chromium using sphagnum moss peat, Water Res. 1993, 27, 1201–1208. 49. Shukla, A., Zhang, Y. H., Dubey, P., Margrave J. L. and Shukla, S. S., The role of sawdust in the removal of unwanted materials from water, J. Hazard. Mater. 2002, 95, 137–152. 50. Wahid, F., Mohammadzai, I. U., Khan, A., Shah, Z., Hassan, W. and Ali, N., Removal of toxic metals with activated carbon prepared from Salvadora persica, Arab. J. Chem. 2017, 10, 2205–2212. 51. Tran, T. V., Bui, Q. T. P., Nguyen, T. D., Le, N. T. H. and Bach, L. G., A comparative study on the removal efficiency of metal ions (Cu2+, Ni2+, and Pb2+) using sugarcane bagasse derived ZnCl2-activated carbon by the response surface methodology, Adsorpt. Sci. Technol. 2017, 35, 72–85. 52. Aguayo-Villarreal, I. A., Bonilla-Petriciolet, A. and Muñiz- Valencia, R., Preparation of activated carbons from pecan nutshell and their application in the antagonistic adsorption of heavy metal ions, J. Mol. Liq. 2017, 230, 686–695. 53. Muslim, A. Ellysa, E. and Said, S. D., Cu(II) ion adsorption using activated carbon prepared from Pithecellobium Jiringa (Jengkol) shells with ultrasonic assistance: Isotherm, kinetic and thermodynamic Studies, J. Eng. Technol. Sci. 2017, 472–490. 54. Latiff, M. F. P. M., Abustan, I., Ahmad, M. A., Yahaya, N. K. E. M., Khalid, A. M., Effect of preparation conditions of activated carbon prepared from corncob by CO2 activation for removal of Cu (II) from aqueous solution, AIP Conference Proceedings, 1st International Conference on Advanced Science, Engineering and Technology, ICASET 2015, Volume 1774. 55. Ramana, D. K. V. and Min, K., Activated carbon produced from pigeon peas hulls waste as a low-cost agro-waste adsorbent for Cu(II) and Cd(II) removal, Des. Water Treat. 2016, 57, 6967–6980. 56. Sabela, M. I., Kunene, K., Kanchi, S., Xhakaza, N. M., Bathinapatla, A., Mdluli, P., Sharma, D. and Bisetty, K., Removal of copper (II) from wastewater using green vegetable waste derived activated carbon: An approach to equilibrium and kinetic study, Arab. J. Chem. 2016, in press., doi.org/10.1016/j.arabjc.2016.06.001. 57. Imamoğlu, M. and Tekir, O., Removal of copper (II) and lead (II) ions from aqueous solutions by adsorption on activated carbon from a new precursor hazelnut husks, Desalination 2008, 228, 108–113. 58. Rao, M. M., Ramesh, A., Rao, G. P. C. and Seshaiah, K., Removal of copper and cadmium from the aqueous solutions by activated carbon derived from Ceiba pentandra hulls, J. Hazard. Mater. 2006, 129, 123–129. 59. Rao, M. M., Ramana, D. K., Seshaiah, K., Wang, M. C. and Chien, S. W. C., Removal of some metal ions by activated carbon prepared from Phaseolus aureus hulls, J. Hazard. Mater. 2009, 166, 1006–1013. 60. Wilson, K., Yang, H., Seo, C. W. ve Marshall, W. E., Select metal adsorption by activated carbon made from peanut shells, Biores. Technol. 2006, 97, 2266–2270. 61. Kalavathy, M. H., Karthikeyan, T., Rajgopal, S. and Miranda, L. R., Kinetic and isotherm studies of Cu(II) adsorption onto H3PO4–activated rubber wood sawdust, J. Colloid Interf. Sci. 2005, 292, 354–362. 62. Karthikeyan, T., Rajgopal, S. and Miranda, L. R., Chromium (VI) adsorption from aqueous solution by Hevea brasilinesis sawdust activated carbon, J. Hazard. Mater. 2005, 124, 192–199. 63. Kalavathy, H., Karthik, B. ve Miranda, L.R., Removal and recovery of Ni and Zn from aqueous solution using activated carbon from Hevea brasiliensis: Batch and column studies, Colloid. Surface. B 2010, 78, 291–302. 64. Altenor, S., Carene, B., Emmanuel, E., Lambert, J., Ehrhardt, J.-J. and Gaspard, S., Adsorption studies of methylene blue and phenol onto vetiver roots activated carbon prepared by chemical activation, J. Hazard. Mater. 2009, 165, 1029–1039. 65. Gundogdu, A., Ozdes, D., Durana, C., Bulut, V. N., Soylak, M. and Senturk, H. B., Biosorption of Pb(II) ions from aqueous solution by pine bark (Pinus brutia Ten.), Chem. Eng. J. 2009, 153, 62–69. 66. Vijayaraghavan, K. and Yun, Y.-S., Bacterial biosorbents and biosorption, Biotechnol Adv. 2008, 26, 266–291. 67. Al-Asheh, S. and Duvnjak, Z., Sorption of cadmium and other heavy metals by pine bark, J. Hazard. Mater. 1997, 56, 35–51. 68. Deshkar, A. M., Bokade, S. S. and Dara, S. S., Modified Hardwickia binata bark for adsorption of mercury(II) from water, Water Res. 1990, 24, 1011–1016.