Bazı katyon değiştirici reçinelerin Pb(II), Cd(II) ve Co(II) iyonlarını bağlama özelliklerinin incelenmesi

Bu çalışma, poli(etilenglikol-dimetil metakrilat) (PEG-DM) birimlerini çapraz olarak içeren altı çeşit polistiren katyon bağlayıcı reçinenin (R) Pb(II), Cd(II) ve Co(II) iyon bağlama özellikleri ele alındı. Reçinelerin mikro boncukları 150-200 µm çapındadır. Şişme oranları, iyon değiştirici kapasiteleri, başlangıç metal iyonu konsantrasyonları, yarışmalı iyon değişimi özellikleri ve reçinelerin rejenerasyon oranları araştırıldı. İyon değiştiricilerin çapraz bağlanma derecesi arttıkça iyon değiştirme kapasiteleri azalır. Katyon bağlama kapasiteler 3,29±0,22 ile 2,28±0,18 meq/g arasında bulundu. pH’nın iyon değişim sıraları ve kapasiteleri üzerinde karmaşık etkileri vardı. PEG-DM reçineleri R-PEG-DM- (400, 600, 1000, 1500, 10000, 35000) için metallerin başlangıç konsantrasyonunun etkisi Pb(II) > Cd(II) > Co(II) olarak bulundu. 400-35000 değerleri PEG’ün mol kütleleridir. Rejenerasyon oranları, R-PEG-DM-600’de Cd(II) için en az %88,13±1,48, R-PEG-DM-1500'de Cd(II) için maksimum % 92,12±2,85 bulundu.

Investigation of bonding properties of Pb(II), Cd(II) and Co(II) ions in some cation exchanger resins

This study deals with the properties of ion exchange by Pb(II), Cd(II), and Co(II) on six different polystyrene cation exchanger resins (R) containing poly(ethylene glycol-dimethyl methacrylate) (PEG-DM) units as cross linkers. Micro beads of resins are 150-200 mm in diameter. Swelling ratios, ion exchanger capacities, initial metal ion concentrations, competitive ion exchange properties and regeneration ratios of resins were investigated. Ion exchangers’ capacity shows a decrease with the increase of the degree of cross-linking. The maximum and minimum capacities were 3.29±0.22 and 2.28±0.18 meq/g, respectively. There were complex effects of pH on the ion exchange orders and capacities. Effects of initial concentration of metals were Pb(II) > Cd(II) > Co(II) for the R-PEG-DM-(400, 600, 1000, 1500, 10000, 35000) resins. Molar masses of PEG were in the range of 400-35000. The regeneration ratios were minimum 88.13±1.48% for Cd(II) on R-PEG-DM-600 and maximum 92.12±2.85% for Cd(II) on R-PEG-DM-1500.

___

  • 1. Nimisha, K. V., Mohan, A., Janardanan, C., Efficacy of Zirconium(IV) tellurotungstate encapsulated in the matrix of polyaniline for heavy metal ion separation, Res. J. Recent Sci. 2014, 3(12), 60-66. 2. Khan, A.A., Shaheen, S., Ion-exchange studies of organic-inorganic nano-composite cation-exchanger: Poly-o-anisidine Sn(IV) tungstate and its analytical application for the separations of toxicmetals, Composites, Part B: Engineering. 2013, 44(1), 692-697.3. Nabi, S.A., Bushra, R., Al-Othman, Z.A., Naushad, M., Synthesis, Characterization, and Analytical Applications of a New Composite Cation Exchange Material Acetonitrile Stannic(IV) Selenite: Adsorption Behavior of Toxic MetalIons in Nonionic Surfactant Medium, Sep. Sci. Technol. 2011, 46(5), 847-857.4. Ocak, M., Ak, T., Aktaş, A., Özbek, N., Çağılcı, O.C., Gümrükçüoğlu, A., Kantekin, H., Ocak, Ü., Alp, H., Metal complexation properties of schiff bases containing 1,3,5-triazine derived from 2-hydroxy-1-naphthaldehyde in solution. A simple spectrofluorimetric method to determine mercury (II), J. Fluores. 2017, 27, 59-68.5. Thind, P.S., Mittal, S.K., Synthesis and ion exchange properties of tin(IV) antimonophosphate and its applications in binary separations of metal ions, Synthesis and Reactivity in Inorganic and Metal-Organic Chem. (1987), 17(1), 93-113.6. Varshney, K.G., Khan, A.A., Maheshwari, A., Anwar, S., Sharma, U., Synthesis of a new thermally stable tin(IV) arsenosilicate cation exchanger and its application for the column chromatographic separation of metal ions, Indian J. Technol.. 1984, 22(3), 99-103. 7. Akhtar, A., Khan, M., Dilwar, A., Nabi, S. A.,Synthesis, characterization and photolytic degradation activity of poly-o-toluidine-thorium(IV)molybdophosphate cation exchanger. Analytical application in metal iontreatment, Desalination. 2015, 361, 1-12.8. Chand, S.S., Pal, B.V., Synthesis and characterization of Bismuth (III) tungustosilicate a new inorganic Cation exchanger, Toxicology and Food Technol. 2013, 4(5), 30-36.9. Shahadat, M., Nabi, S.A., Bushra, R., Raeissi, A.S., Umar, K., Ansari, M.O., Synthesis, characterization, photolytic degradation, electrical conductivity and applications of a nanocomposite adsorbent for the treatment of Pollutants, RSC Advances. 2012, 2(18), 7207-7220. 10. Masram, D.T., Kariya, K.P., Bhave, N.S., Analytical applications of newly synthesized resin derived from salicylic acid, phenylenediamine and formaldehyde, Pharma Chemica. 2012, 4(3), 1239-1246. 11. Chand, S.S.A., Chahal, C.V., Synthesis, characterization and analytical applications of a new ion exchange material based on antimony(III), Asian J. Chem. 2012, 24(3), 1297-1300. 12. Ahmad, M.M., Siddiqui, W.A., Khan, T.A., Synthesis, ion exchange properties and analytical application of new hybrid cation exchanger: acrylonitrile tin(IV) tungstophosphate, Oriental J. Chem. 2010, 26(2), 429-435. 13. Nabi, S.A., Naushad, M., A new electron exchange material Ti(IV) iodovanadate: Synthesis, characterization and analytical applications, Chem. Engineering J. 2010, 158(2), 100-107.14. Siji, S., Janardanan, C., Cerium (IV) arsenovanadate - a reusable and highly efficient ion exchange material for the recovery of cobalt, lead and manganese from aqueous solutions, J. Appl. Chem. 2014, 3(1), 302-309.15. Savaşkan, S., Beşirli, N., Hazer, B., Synthesis of some new cation-exchanger resins, J. Appl. Polymer Science. 1996, 59, 1515-1524.16. S.S. Yılmaz, H. Özbayrak and B. Hazer, Synthesis of the new cation exchange resins having poly(styrene-caprolactone) units, Tr. J. Chem. 21 (1997) 270.17. Anthony, G.J., Koolhaas, A., Berkel, P.M.V., Slot, S.C.V., Diaz, G.M., Diressen, W.L., Reedijk, J., Copper(II) Coordination Compounds with Bis(imidazol-2-yl)methylamine and Bis(imidazol-2-yl)methylaminomethane in Relation to Bis(imidazol-2-yl) methyl amine-Modified Poly(glycidyl methacrylate) Polymers and Other Bis(imidazol-2-yl)-Containing Ligands, Inorg. Chem. 1996, 35, 3525-3532.18. Denizli, A., Salih, B., and Pişkin, E., Alkali Blue 6B-attached poly(EGDMA-HEMA) microbeads for removal of heavy-metal ions, React. Funct. Polym. 1996, 29, 11-19.19. Sweify, F.H.E., Tadros, N.A., Ion exchange studies of U(VI) from aqueous Arsenazo-III solutions using AG-2X8, Dowex-50WX8 and Chelex-100 resins, J. Radioanalytical and Nuclear Chem. 1996, 209, 157-169.20. Hayashita, T., Goo, M.J., Lee, J.C., Kim, J.S., Krzykawski, J., and Bartsch, R.A., Selective sorption of alkali-metal cations by carboxylic acid resins containing acyclic or cyclic polyether units, Anal. Chem. 1990, 62, 2283-2287.21. Ibrahim, G.M., El-Gammal, B., El-Naggar, I.M., Synthesis and characterization of novel materials, tin potassium vanadate and zirconium potassium vanadate inorganic multi-component ion exchangers, Sep. Sci. Technol. 2011, 46(4), 664-678. 22. Mittal, S.K., Singh, P.P., Synthesis, ion exchange properties and applications of tin(IV) antimonoarsenate, React. Funct. Polym. 1999, 40, 231-240.23. R.X. Liu, B.W. Zhang and H.X. Tang, Synthesis and characterization of poly(acrylaminophosphonic-carboxyl-hydrazide) chelating fibre, React. Funct. Polym. 1999, 39, 71-81.24. Suarez, M., Arce, M.J., Llavona, R., Rodriguez, J., Bortun, A.I., Bortun, L.N., Hydrothermal synthesis and characterization of the layered zirconium germanate Na2Zr5Ge2O15·nH2O, Solvent Extr. Ion. Exc. 1999, 17, 209-220.25. Filik, H., and Apak, R., A chelating ion exchanger for gallium recovery from alkaline solution using 5-palmitoyl-8-hydroxyquinoline immobilized on a nonpolar adsorbent, Sep. Sci. Technol. 1998, 33, 1123-1134.26. Valverde, J.L., de Lucas, A., Carmona, M., Gonzalez, M., Rodriguez, J.F., Equilibrium data of the exchange of Cu2+, Cd2+ and Zn2+ ions for H+ on the cationic exchanger Lewatit TP-207, J. Chem. Technol. and Biotechnol. 2004, 79(12), 1371-1375.27. Ersöz, M., Çengeloğlu, Y., and Gökdemir, N., Selectivity and kinetics of ligand exchange of anions in a chelate ion exchanger. New J. Chem. 1997, 21, 1067-1072.28. R.W., Grimshaw, C.E. Harland, Ion Exchange: Introduction to Theory and Practise, Second Edition, The Guernsey Press Co. Ltd., London,1975.29. Mekvabishvili, T.V., Saldadze, K.M., Kel'man, B.Y., Thermal stability of phosphoric acid cation-exchange resins, Khim. Aktiv. Polim. Ikh Primen. 1969, 205-208. 30. Woo, J.A., Chen, H., Snyder, M.A., Chai, Y., Frost, R.G., Cramer, S.M., Defining the property space for chromatographic ligands from a homologous series of mixed-mode ligands, J. Chromatogr. A. 2015, 1407, 58-68. 31. Lucas, A., Valverde, J.L., Romero, M.C., Gomez, J., Rodriguez, J.F., The ion exchange equilibria of Na+/K+ in nonaqueous and mixed solvents on a strong acid cation exchanger, Chemical Engineering Science, 2002, 57, 1943-1954.32. Zhang, J.P., Zhang, F.S., Recycling waste polyethylene film for amphoteric superabsorbent resin synthesis, Chemical Engineering J. 2018, 331, 169-176.33. Golonka, I., Czechowski, F., Jezierski, A., EPR characteristics of heat treated complexes of metals with demineralised humic brown coal in air and ammonia atmospheres, Geoderma. 2005, 127(3-4), 237-252. 34. Beşirli, N., Baysal, B.M.,, Ion-exchange studies with some complex ions on ion-exchange resins. Solvent Extraction and Ion Exchange. 1993, 11, 541-554.35. Quade, D.T.M., Pullen, A.E., Swager, T.M., Conjugated polymer-based chemical sensors, Chem. Rew. 2000, 100, 2537-2574.36. Rufus, A.L., Velmurugan, S., Sasıkumar, P., Sathyaseelan, V.S., Narasımhan, S.V., and Mathur, P.K., Ion-exchange considerations in dilute chemical decontamination processes operated in the regenerative mode, Nuclear Technol. 1998, 122, 228-249.37. Matejka, Z., and Zitkova, Z., The sorption of heavy-metal cations from EDTA complexes on acrylamide resins having oligo(ethyleneamine) moieties, React Funct Polym. 1997, 35, 81-88.38. Isshiki, K., Sohrin, Y., Karatani, H., and Nakayama, E., Preconcentration of chromium(III) and chromium(VI) in seawater by complexation with quinolin-8-ol and adsorption on macroporous resin, Anal. Chim. Acta. 1989, 224, 55-64.
  • 2. Khan, A.A., Shaheen, S., Ion-exchange studies of organic-inorganic nano-composite cation-exchanger: Poly-o-anisidine Sn(IV) tungstate and its analytical application for the separations of toxicmetals, Composites, Part B: Engineering. 2013, 44(1), 692-697.
  • Nabi, S.A., Bushra, R., Al-Othman, Z.A., Naushad, M., Synthesis, Characterization, and Analytical Applications of a New Composite Cation Exchange Material Acetonitrile Stannic(IV) Selenite: Adsorption Behavior of Toxic MetalIons in Nonionic Surfactant Medium, Sep. Sci. Technol. 2011, 46(5), 847-857.
  • 4. Ocak, M., Ak, T., Aktaş, A., Özbek, N., Çağılcı, O.C., Gümrükçüoğlu, A., Kantekin, H., Ocak, Ü., Alp, H., Metal complexation properties of schiff bases containing 1,3,5-triazine derived from 2-hydroxy-1-naphthaldehyde in solution. A simple spectrofluorimetric method to determine mercury (II), J. Fluores. 2017, 27, 59-68.
  • 5. Thind, P.S., Mittal, S.K., Synthesis and ion exchange properties of tin(IV) antimonophosphate and its applications in binary separations of metal ions, Synthesis and Reactivity in Inorganic and Metal-Organic Chem. (1987), 17(1), 93-113.
  • 6. Varshney, K.G., Khan, A.A., Maheshwari, A., Anwar, S., Sharma, U., Synthesis of a new thermally stable tin(IV) arsenosilicate cation exchanger and its application for the column chromatographic separation of metal ions, Indian J. Technol.. 1984, 22(3), 99-103.
  • 7. Akhtar, A., Khan, M., Dilwar, A., Nabi, S. A.,Synthesis, characterization and photolytic degradation activity of poly-o-toluidine-thorium(IV)molybdophosphate cation exchanger. Analytical application in metal iontreatment, Desalination. 2015, 361, 1-12.
  • 8. Chand, S.S., Pal, B.V., Synthesis and characterization of Bismuth (III) tungustosilicate a new inorganic Cation exchanger, Toxicology and Food Technol. 2013, 4(5), 30-36.
  • 9. Shahadat, M., Nabi, S.A., Bushra, R., Raeissi, A.S., Umar, K., Ansari, M.O., Synthesis, characterization, photolytic degradation, electrical conductivity and applications of a nanocomposite adsorbent for the treatment of Pollutants, RSC Advances. 2012, 2(18), 7207-7220.
  • 10. Masram, D.T., Kariya, K.P., Bhave, N.S., Analytical applications of newly synthesized resin derived from salicylic acid, phenylenediamine and formaldehyde, Pharma Chemica. 2012, 4(3), 1239-1246.
  • 11. Chand, S.S.A., Chahal, C.V., Synthesis, characterization and analytical applications of a new ion exchange material based on antimony(III), Asian J. Chem. 2012, 24(3), 1297-1300.
  • 12. Ahmad, M.M., Siddiqui, W.A., Khan, T.A., Synthesis, ion exchange properties and analytical application of new hybrid cation exchanger: acrylonitrile tin(IV) tungstophosphate, Oriental J. Chem. 2010, 26(2), 429-435.
  • 13. Nabi, S.A., Naushad, M., A new electron exchange material Ti(IV) iodovanadate: Synthesis, characterization and analytical applications, Chem. Engineering J. 2010, 158(2), 100-107.
  • 14. Siji, S., Janardanan, C., Cerium (IV) arsenovanadate - a reusable and highly efficient ion exchange material for the recovery of cobalt, lead and manganese from aqueous solutions, J. Appl. Chem. 2014, 3(1), 302-309.
  • 15. Savaşkan, S., Beşirli, N., Hazer, B., Synthesis of some new cation-exchanger resins, J. Appl. Polymer Science. 1996, 59, 1515-1524.
  • 16. S.S. Yılmaz, H. Özbayrak and B. Hazer, Synthesis of the new cation exchange resins having poly(styrene-caprolactone) units, Tr. J. Chem. 21 (1997) 270.
  • 17. Anthony, G.J., Koolhaas, A., Berkel, P.M.V., Slot, S.C.V., Diaz, G.M., Diressen, W.L., Reedijk, J., Copper(II) Coordination Compounds with Bis(imidazol-2-yl)methylamine and Bis(imidazol-2-yl)methylaminomethane in Relation to Bis(imidazol-2-yl) methyl amine-Modified Poly(glycidyl methacrylate) Polymers and Other Bis(imidazol-2-yl)-Containing Ligands, Inorg. Chem. 1996, 35, 3525-3532.
  • 18. Denizli, A., Salih, B., and Pişkin, E., Alkali Blue 6B-attached poly(EGDMA-HEMA) microbeads for removal of heavy-metal ions, React. Funct. Polym. 1996, 29, 11-19.
  • 19. Sweify, F.H.E., Tadros, N.A., Ion exchange studies of U(VI) from aqueous Arsenazo-III solutions using AG-2X8, Dowex-50WX8 and Chelex-100 resins, J. Radioanalytical and Nuclear Chem. 1996, 209, 157-169.
  • 20. Hayashita, T., Goo, M.J., Lee, J.C., Kim, J.S., Krzykawski, J., and Bartsch, R.A., Selective sorption of alkali-metal cations by carboxylic acid resins containing acyclic or cyclic polyether units, Anal. Chem. 1990, 62, 2283-2287.
  • 21. Ibrahim, G.M., El-Gammal, B., El-Naggar, I.M., Synthesis and characterization of novel materials, tin potassium vanadate and zirconium potassium vanadate inorganic multi-component ion exchangers, Sep. Sci. Technol. 2011, 46(4), 664-678.
  • 22. Mittal, S.K., Singh, P.P., Synthesis, ion exchange properties and applications of tin(IV) antimonoarsenate, React. Funct. Polym. 1999, 40, 231-240.
  • 23. R.X. Liu, B.W. Zhang and H.X. Tang, Synthesis and characterization of poly(acrylaminophosphonic-carboxyl-hydrazide) chelating fibre, React. Funct. Polym. 1999, 39, 71-81.
  • 24. Suarez, M., Arce, M.J., Llavona, R., Rodriguez, J., Bortun, A.I., Bortun, L.N., Hydrothermal synthesis and characterization of the layered zirconium germanate Na2Zr5Ge2O15·nH2O, Solvent Extr. Ion. Exc. 1999, 17, 209-220.
  • 25. Filik, H., and Apak, R., A chelating ion exchanger for gallium recovery from alkaline solution using 5-palmitoyl-8-hydroxyquinoline immobilized on a nonpolar adsorbent, Sep. Sci. Technol. 1998, 33, 1123-1134.
  • 26. Valverde, J.L., de Lucas, A., Carmona, M., Gonzalez, M., Rodriguez, J.F., Equilibrium data of the exchange of Cu2+, Cd2+ and Zn2+ ions for H+ on the cationic exchanger Lewatit TP-207, J. Chem. Technol. and Biotechnol. 2004, 79(12), 1371-1375.
  • 27. Ersöz, M., Çengeloğlu, Y., and Gökdemir, N., Selectivity and kinetics of ligand exchange of anions in a chelate ion exchanger. New J. Chem. 1997, 21, 1067-1072.
  • 28. R.W., Grimshaw, C.E. Harland, Ion Exchange: Introduction to Theory and Practise, Second Edition, The Guernsey Press Co. Ltd., London,1975.
  • 29. Mekvabishvili, T.V., Saldadze, K.M., Kel'man, B.Y., Thermal stability of phosphoric acid cation-exchange resins, Khim. Aktiv. Polim. Ikh Primen. 1969, 205-208.
  • 30. Woo, J.A., Chen, H., Snyder, M.A., Chai, Y., Frost, R.G., Cramer, S.M., Defining the property space for chromatographic ligands from a homologous series of mixed-mode ligands, J. Chromatogr. A. 2015, 1407, 58-68.
  • 31. Lucas, A., Valverde, J.L., Romero, M.C., Gomez, J., Rodriguez, J.F., The ion exchange equilibria of Na+/K+ in nonaqueous and mixed solvents on a strong acid cation exchanger, Chemical Engineering Science, 2002, 57, 1943-1954.
  • 32. Zhang, J.P., Zhang, F.S., Recycling waste polyethylene film for amphoteric superabsorbent resin synthesis, Chemical Engineering J. 2018, 331, 169-176.
  • 33. Golonka, I., Czechowski, F., Jezierski, A., EPR characteristics of heat treated complexes of metals with demineralised humic brown coal in air and ammonia atmospheres, Geoderma. 2005, 127(3-4), 237-252.
  • 34. Beşirli, N., Baysal, B.M.,, Ion-exchange studies with some complex ions on ion-exchange resins. Solvent Extraction and Ion Exchange. 1993, 11, 541-554.
  • 35. Quade, D.T.M., Pullen, A.E., Swager, T.M., Conjugated polymer-based chemical sensors, Chem. Rew. 2000, 100, 2537-2574.
  • 36. Rufus, A.L., Velmurugan, S., Sasıkumar, P., Sathyaseelan, V.S., Narasımhan, S.V., and Mathur, P.K., Ion-exchange considerations in dilute chemical decontamination processes operated in the regenerative mode, Nuclear Technol. 1998, 122, 228-249.
  • 37. Matejka, Z., and Zitkova, Z., The sorption of heavy-metal cations from EDTA complexes on acrylamide resins having oligo(ethyleneamine) moieties, React Funct Polym. 1997, 35, 81-88.
  • 38. Isshiki, K., Sohrin, Y., Karatani, H., and Nakayama, E., Preconcentration of chromium(III) and chromium(VI) in seawater by complexation with quinolin-8-ol and adsorption on macroporous resin, Anal. Chim. Acta. 1989, 224, 55-64.