Uçaklardan Kaynaklanan Emisyonlarin Belirlenmesi ve Modellenmesi: Kahramanmaraş Havalimani Örneği

Havaalanları önemli hava kirletici kaynaklarından biridir. ). Sera gazları (CO2, CH4, N2O, H2O, O3) ve partikül maddeler en çok bilinen havalimanı kaynaklı hava kirleticileridir. Sera gazı karakterli  antropojenik kaynaklı diğer kirleticiler ve insan aktiviteleri de bu hava kirleticilerinin bir bölümünü oluşturur. Sera gazlarının (Karbondioksit, metan ve azot oksit) konsantrasyonları insan aktiviteleriyle artış göstermektedir. Bu çalışmada Tier yaklaşımları aracılığıyla IPCC (Hükümetlerarası İklim Değişikliği Paneli) metodolojilerini kullanarak hava kirletici emisyon emisyonlarının (CO, NOx, SO2, NMVOC) ve özellikle beş doğal sera gazından başlıca üç tanesinin (CO2, CH4, N2O) konsantrasyonlarının, LTO (iniş / kalkış) sırasındaki uçaklardan ve Kahramanmaraş Havaalanındaki diğer kaynaklardan oluşum miktarları 2015 ve 2016 yılları için tahmin edildi. Buna göre LTO sayısı 2015 yılı için 2330; 2016 yılı için 2693 olarak belirlendi. Buna ek olarak, LTO fazları sırasında ortaya çıkan SO2 emisyonları, Kahramanmaraş Havalimanı'nın hava kalitesi üzerine etkisi MATLAB SIMULINK kullanılarak modellenmiştir. Elde edilen sonuçlar, SO2 emisyonunun konsantrasyon değişikliklerine katkısının Kahramanmaraş şehir modelinde nispeten daha düşük ve daha yavaş değiştiği gösterirken, konsantrasyon değişikliklerine SO2 emisyon katkısının Kahramanmaraş Havaalanı modeline göre daha hızlı ve daha fazla gözlendiğini göstermiştir. 

Determination and Modelling of Emissions from Aircraft at Kahramanmaras Airport, Turkey

Airports are one of the significant sources of air pollutants.  Greenhouse gases (CO2, CH4, N2O, H2O, O3)  and particulate matter are most known airport originated air pollutant. Human activity has provided additional sources for these and other gases that have greenhouse-gas characteristics. Carbon dioxide, methane, and nitrous oxide concentration have increased line due to the human activity.  Values of air pollutants emissions (CO, NOx, SO2, NMVOC) and specifically three of five natural greenhouse gases (CO2, CH4, N2O) were estimated from aircraft during the LTO (landing / take off) and other sources at Kahramanmaras Airport for 2015 and 2016 using methodologies of IPCC (Intergovernmental Panel on Climate Change) by means of Tier approaches in this study. According to these data number of LTO were determined 2330 for 2015 year and 2693 for 2016 year respectively. In addition to this SO2 emissions which occurred during LTO phases were modeled using by MATLAB SIMULINK on air quality of Kahramanmaras Airport. The results indicated that the SO2 emission contribution to changes of concentration was been observed relatively lower and more slowly on   Kahramanmaras city model, while SO2 emission contribution to changes of concentration was been observed more quickly and more based on Kahramanmaras Airport model. 

___

  • [1] Arunachalam, S., Wang, B., Davis, N., Baek, B. H., Levy, J. I. 2011. Effect of chemistry-transport model scale and resolution on population exposure to PM2.5 from aircraft emissions during landing and takeoff. Atmos. Environ. 45(19), 3294-3300. https://doi.org/10.1016/j.atmosenv.2011.03.029.
  • [2] Barrett, S.R.H., Britter, R.E., Waitz, I.A., 2013. Impact of aircraft plume dynamics on airport local air quality. Atmos. Environ. 74, 247–258.
  • [3] British Airports Authority, 2006.Gatwick 2010 Baseline Emission Inventory. Available at: http://83.98.24.64/Documents/business_and_community/Publications/2006/2010_basline_emissions_inventory.pdf (last accessed September, 2013).
  • [4] Carslaw, D.C., Beevers, S.D., Ropkins, K.., Bell, M.C., 2006. Detecting and quantifying aircraft and other on airport contributions to ambient nitrogen oxides in the vicinity of a large international airport. Atmos. Environ. 40, 5424–5434.
  • [5] Ekici, S., Yalın, G., Altuntaş, O., Karakoç, T.H., 2013. Calculation of HC, CO and NOx from civil aviation in Turkey in 2012. Int. J. of Environ. Pollut. 53, 232–244.
  • [6] Elbir, T., 2008. Estimation of engine emissions from commercial aircraft at a midsized Turkish airport. J. Environ. Eng. 134, 210-215.
  • [7] Ellermann, T., Massling, A., Lofstrom, P., Winther, M., Nojgaard, J.K., Ketzel, M., 2011. Investigation of air pollution at the apron at Copenhagen Airport in relation to Working Environment (Danish with English Summary). DCE- Danish Centre for Environment and Energy, Aarhus University, p.148. DCE report no.5.
  • [8] FAA., 2015. Aviation Emissions, Impacts ve Mitigation: A Primer. Office of Environment and Energy.
  • [9] Finlayson-Pitts B. J., Pitts J. N., 2000. Chemistry of the Upper and Lower Atmosphere Theory, Experiments, and Applications, Academic Pres, U.S.A.
  • [10] Gettelman, A., Chen, C., 2013. The climate impact of aviation aerosols. Geophys. Res. 40, 2785-2789. https://doi.org/10.1002/grl.50520.
  • [11] Hauglustaine, D.A., Koffi, B., 2012. Boundary layer ozone pollution caused by future aircraft emissions. Geophys Res. Vol.39, L130808. https://doi.org/10.1029/2012GL052008.
  • [12] Hsu, H.H., Adamkiewicz, G., Houseman, E.A., Vallarino, J., Melly S.J.,Wayson, R.L.,Spengler, J.D., Levy, J.İ., 2012.The relationship between aviation activities and ultrafine particulate matter concentrations near a mid-sized airport. Atmos. Environ. 50, 328–337.
  • [13] International Civil Aviation Organization (ICAO).,1993. Environmental protection: Annex, 16, Vol.II, Aircraft Engine Emissions.
  • [14] IPCC., 2006. Intergovermental Panel on Climate Change (IPCC) Guidelines for National Greenhouse Gas Inventories, IPCC.
  • [15] IPCC/UNEP/OECD/IEA,1997.Revised 1996 IPCC Guidelines for National Greenhouse Gas İnventories Volume II: Workbook ,Chapter 1pp 3-23.
  • [16] Kesgin, U., 2006. Aircraft Emissions at Turkish Airports. Energy. 31, 372–384.
  • [17] Lee, D.S., Fahey,D.W., Forster, P.M., Newton, P.J., Wit, R.C.N., Lim,L.L., Owen,B.,Sausen, R. 2009. Aviation and global climate change in the 21st century. Atmos. Environ. 43, 3520–3537.
  • [18] Pecorari, E., Mantovani, A., Franceschini, C., Bassano, D., Palmeri, L., Rampazzo, G., 2016. Analysis of the effects of the meteorology on aircraft exhaust dispersion and deposition using a Lagrangian particle model. Sci. Total Environ. 541, 839-856.
  • [19] Schüermann, G., Schafer, K., Jahn, C., Hoffmann, H., Bauerfeind, M., Fleuti, E., Rappengluck, B., 2007. The impact of NOx, CO and VOC emissions on the air quality of Zurich Airport. Atmos. Environ. 41, 103-118.
  • [20] Song, S.K , Shon, Z.H., Kong, Y.H., 2015. Comparision of impacts aircraft emissions within the boundary layer on the regional ozone in South Korea. Atmos. Environ. 117, 169- 179.
  • [21] Song, S-H., Shon Z-H., 2012. Emissions of greenhouse gases and air pollutants from commercial aircraft at international airports in Korea. Atmos. Environ. 61, 48-58.
  • [22] Unal, A., Hu,, Y., Chang,, M., Odman,, M., Russell, A., 2005. Airport related emissions and impacts on air quality:Application to the Atlanta International Airport. Atmos. Environ.39, 5787–5798.
  • [23] Ünal, İ., Türkoğlu, F. ve Doğan, B., 2014.Research on nevsehir kapadokya airport in point of emission and noise,Journal of Engineering and Machine55, (854). 24-29.
  • [24] Westerdahl, D., Fruin, S.A., Fine, P.L., Sioutas, C., 2008. Los Angeles International Airport as a source of ultrafine particles and other pollutants to nearby communities. Atmos. Environ. 42, 3143-3155.
  • [25] Yılmaz, İ., 2017. Emissions from passenger aircraft at Kayseri Airport, Turkey. J. Air Transp. 58, 176-182. https://doi.org/10.1016/j.jairtraman.2016.11.001.
  • [26] Zeydan, Ö., 2017. Air Pollution Modelling. http://cevre.beun.edu.tr/zeydan
  • [27] Johnson, G.R., Mazaheri, M., Ristovski, Z.D., Morawska, L., 2008. A plume capture technique for the remote characterization of aircraft engine emissions. Environ.Sci.Technol. 42 (13), 4850–4856.