Sinek Larvalarından Elde Edilen Antimikrobiyal Peptidlerin Sarı Tüylü Piliçlerin Bağışıklığı Üzerine Etkisi

Bu çalışmanın amacı, sinek larvalarından elde edilen antimikrobiyal peptitlerinin sarı tüylü piliçlerin diyetine takviyesinin bağışıklık biyokimyasal göstergeleri, bağışıklık organ indeksi, ince bağırsak bakterileri ve ince bağırsak mukozal hücre sayısı üzerine etkisini araştırmaktı. Klinik olarak sağlıklı 300 adet 1 günlük sarı tüylü civciv, her grupta 10 hayvan ve her grubun 10 tekrarı olmak üzere rastgele 3 grubua ayrıldı. Gruplar böylelikle, bazal diyet grubu (kontrol grubu), bazal diyet + 100 mg/kg sinek larvası antimikrobiyal peptid (AMP) grubu ve bazal diyet + %15 basitrasin çinko grubu olarak adlandırıldı. Deney süresi 42 gün olarak gerçekleştirildi. Sonuçlar, AMP grubunun albümin, IgG ve IgM seviyesinin kontrol grubuna oranla önemli ölçüde yüksek olduğunu gösterdi (P

Eff ect of Antimicrobial Peptides from Fly Maggots on Immunity of Yellow-feathered Broilers

Abstract:Th e aim of this experiment was to investigate the eff ect of dietary supplementation of fl y maggot antimicrobial peptides on immune biochemical indicators, the eff ect of immune organ index, small intestinal bacteria and small intestinal mucosal cell count in yellow-feathered broilers. Th ree hundred clinically healthy 1-day-old yellow-feathered broilers were randomly divided into 3 treatment groups, 10 replicates in each group and 10 broilers in each replicate. Th e groups were called hereaft er as basal diet group (control group), basal diet + 100 mg/kg fl y maggot antimicrobial peptide (AMPs) group, basal diet + 15% bacitracin zinc group. Th e test period was 42 d. Th e results showed that the contents of albumin, IgG and IgM in the antimicrobial peptide group were significantly higher than those in the control group (P

___

  • 1. Zasloff M: Antimicrobial peptides of multicellular organisms. Nature, 415 (6870): 389-395, 2002. DOI: 10.1038/415389a
  • 2. Lazzaro BP, Zasloff M, Rolff J: Antimicrobial peptides: Application informed by evolution. Science, 368 (6490):eaau5480, 2020. DOI: 10.1126/ science.aau5480
  • 3. Silveira RF., Roque-Borda CA, Vicente EF: Antimicrobial peptides as a feed additive alternative to animal production, food safety and public health implications: An overview. Anim Nutr 7 (3): 896-904, 2021. DOI: 10.1016/j. aninu.2021.01.004
  • 4. Pal L, Brahmkhatri VP, Bera S, Bhattacharyya D, Quirishi Y, Bhunia A, Atreya HS: Enhanced stability and activity of an antimicrobial peptide in conjugation with silver nanoparticle. J Colloid Interface Sci, 483, 385-393, 2016. DOI: 10.1016/j.jcis.2016.08.043
  • 5. Silva JP, Appelberg R, Gama FM: Antimicrobial peptides as novel antituberculosis therapeutics. Biotechnol Adv, 34 (5): 924-940, 2016. DOI: 10.1016/j.biotechadv.2016.05.007
  • 6. Fu J, Song J, Ren G, Zhu J, Feng X: Antimicrobial peptides from fly maggots and their application in animal production. Chinese Feed, 17, 11-17, 2018. DOI: 10.15906/j.cnki.Cn11-2975/s.20181702
  • 7. Wang Z, Wang J, Zhang Y, Wang X, Zhang X, Liu Y, Xi J, Tong H, Wang Q, Jia B, Shen H: Antimicrobial peptides in housefly larvae (Musca domestica) affect intestinal Lactobacillus acidophilus and mucosal epithelial cells in Salmonella pullorum-infected chickens. Kafkas Univ Vet Fak Derg, 23 (3): 423-430, 2017. DOI: 10.9775/kvfd.2016.16901
  • 8. Yacoub HA, Elazzazy AM, Mahmoud MM, Baeshen MN, Al-Maghrabi OA, Alkarim S, Ahmed ES, Almehdar HA, Uversky VN: Chicken cathelicidins as potent intrinsically disordered biocides with antimicrobial activity against infectious pathogens. Dev Comp Immunol, 65, 8-24, 2016. DOI: 10.1016/j.dci.2016.06.012
  • 9. Dutta P, Das S: Mammalian antimicrobial peptides: Promising therapeutic targets against chronic infection and inflammation. Curr Top Med Chem, 16 (1): 99-129, 2016. DOI: 10.2174/1568026615666150703121819
  • 10. Xia X, Cheng L, Zhang S, Wang L, Hu J: The role of natural antimicrobial peptides during infection and chronic inflammation. Antonie Van Leeuwenhoek, 111 (1): 5-26, 2018. DOI: 10.1007/s10482-017-0929-0
  • 11. Wang G, Song Q, Huang S, Wang Y, Cai S, Yu H, Ding X, Zeng X, Zhang J: Effect of antimicrobial peptide microcin J25 on growth performance, immune regulation, and intestinal microbiota in broiler chickens challenged with Escherichia coli and Salmonella. Animals (Basel), 10 (2):345, 2020. DOI: 10.3390/ani10020345
  • 12. Jozefiak A, Engberg RM: Insect proteins as a potential source of antimicrobial peptides in livestock production. A review. J Anim Feed Sci, 26, 87-99, 2017. DOI: 10.22358/jafs/69998/2017
  • 13. Morsink MAJ, Willemen NGA, Leijten J, Bansal R, Shin SR: Immune organs and immune cells on a chip: An overview of biomedical applications. Micromachines (Basel), 11 (9):849, 2020. DOI: 10.3390/mi11090849
  • 14. Zhang X, Zhao Q, Wen L, Wu C, Yao Z, Yan Z, Li R, Chen L, Chen F, Xie Z, Chen F, Xie Q: The effect of the antimicrobial peptide plectasin on the growth performance, intestinal health, and immune function of yellow-feathered chickens. Front Vet Sci, 8:688611, 2021. DOI: 10.3389/ fvets.2021.688611
  • 15. Yang Y, Jiang Y, She R, Yin Q, Peng K, Bao H, Wang D, Liu T, Zhou X: Effects of chicken intestinal antimicrobial peptides on humoral immunity of chickens and titres after vaccination with chicken bursal disease virus in antibody. Arch Anim Nutr, 60 (5): 427-435, 2006. DOI: 10.1080/17450390600884484
  • 16. Kogut MH: The effect of microbiome modulation on the intestinal health of poultry. Animal Feed Sci Technol, 250, 32-40, 2019. DOI: 10.1016/j. anifeedsci.2018.10.008
  • 17. Yadav S, Jha R: Strategies to modulate the intestinal microbiota and their effects on nutrient utilization, performance, and health of poultry. J Anim Sci Biotechnol 10:2, 2019. DOI: 10.1186/s40104-018-0310-9
  • 18. Hirsch R, Wiesner J, Bauer A, Marker A, Vogel H, Hammann PE, Vilcinskas A: Antimicrobial peptides from rat-tailed maggots of the drone fly Eristalis tenax show potent negative activity against gram-bacteria. Microorganisms, 8 (5):626, 2020. DOI: 10.3390/microorganisms8050626
  • 19. Liu Y, Shi J, Tong Z, Jia Y, Yang K, Wang Z: Potent broad-spectrum antibacterial activity of amphiphilic peptides against multidrug-resistant bacteria. Microorganisms, 8 (9):1398, 2020. DOI: 10.3390/microorganisms8091398
  • 20. Tanhaeian A, Ahmadi FS, Sekhavati MH, Mamarabadi M: Expression and purification of the main component contained in camel milk and its antimicrobial against plant pathogens. Probiotics Antimicrob Proteins, 10, 787-793, 2018. DOI: 10.1007/s12602-018-9416-9
  • 21. Tanhaeian A, Azghandi M, Razmyar J, Mohammadi E, Sekhavati MH: Recombinant production of a chimeric antimicrobial peptide in E. coli and assessment of its activity against some clinically isolated avian chimeric pathogens. Microb Pathog, 122, 73-78, 2018. DOI: 10.1016/j.micpath. 2018.06.012
  • 22. Tanhaeian A, Jaafari MR, Ahmadi FS, Vakili-Ghartavol R, Sekhavati MH: Secretory expression of a chimeric peptide in Lactococcus lactis: Assessment of its cytotoxic activity and a deep view on interaction with cell-surface glycosaminans by molecular modeling. Probiotics Antimicrob Proteins, 11 (3): 1034-1041, 2019. DOI: 10.1007/s12602-018-9496-6
  • 23. Daneshmand, A, Kermanshahi H, Sekhavati MH, Javadmanesh A, Ahmadian M, Alizadeh M, Aldawoodi A: Effects of cLFchimera peptide on intestinal morphology, integrity, microbiota, and immune cells in broiler chickens challenged with necrotic enteritis. Sci Rep, 10: 17704, 2020. DOI: 10.1038/s41598-020-74754-x
  • 24. Higgs R, Lynn DJ, Gaines S, McMahon J, Tierney J, James T, Lloyd AT, Mulcahy G, O‘Farrelly C: The synthetic form of a novel chicken beta-defensin identified in silico is predominantly active against intestinal pathogens. Immunogenetics, 57 (1-2): 90-98, 2005. DOI: 10.1007/s00251- 005-0777-3
  • 25. Goto R, Miki T, Nakamura N, Fujimoto M, Okada N: Salmonella Typhimurium PagP- and UgtL-dependent resistance to antimicrobial peptides contributes to thegut colonization. PLoS One, 12 (12):e0190095, 2017. DOI: 10.1371/journal.pone.0190095
  • 26. Daneshmand A, Kermanshahi H, Sekhavati MH, Javadmanesh A, Ahmadian M: Antimicrobial peptide, cLF36, affects performance and intestinal morphology, microflora, junctional proteins, and immune cells in broilers challenged with E. coli. Sci Rep, 9:14176, 2019. DOI: 10.1038/ s41598-019-50511-7
  • 27. Luo X, Zheng Y, Wen R, Deng X, Zhou L, Liao H: Effects of ceftriaxoneinduced intestinal dysbacteriosis on lymphocytes in different tissues in mice. Immunobiol, 221 (9): 994-1000, 2016. DOI: 10.1016/j.imbio.2016.04.003
  • 28. Maglio M, Florian F, Vecchiet M, Auricchio R, Paparo F, Spadaro R, Zanzi D, Rapacciuolo L, Franzese A, Sblattero D, Marzari R, Troncone R: Majority of children with type1 diabetes produce and deposit anti-tissue transglutaminase antibodies in the small intestine. Diabetes, 58 (7): 1578- 1584, 2009. DOI: 10.2337/db08-0962
  • 29. Fuchs A, Vermi W, Lee JS, Lonardi S, Gilfillan S, Newberry RD, Cella M, Colonna M: Intraepithelial type-1 innate lymphoid cells are a unique responsive subset of IL-12 and IL-15 IFN-γ-producing cells. Immunity, 38 (4): 769-781, 2013. DOI: 10.1016/j.immuni.2013.02.010
  • 30. Knoop KA, McDonald KG, McCrate S, Newberry RD: Microbial sensing by goblet cells controls immune surveillance of luminal antigens in the colon. Mucosal Immunol, 8 (1): 198-210, 2015. DOI: 10.1038/mi.2014.58
  • 31. Ridler C: Sentinel goblet cells flush out bacteria from crypts. Nat Rev Gastroenterol Hepatol, 13 (8): 438, 2016. DOI: 10.1038/nrgastro.2016.117
  • 32. Liu T, She R, Wang K, Bao H, Zhang Y, Luo D, Hu Y, Ding Y, Wang D, Peng K: Effects of rabbit sacculus rotundus antimicrobial peptides on the intestinal mucosal immunity in chickens. Poult Sci, 87 (2): 250-254, 2008. DOI: 10.3382/ps.2007-00353
Kafkas Üniversitesi Veteriner Fakültesi Dergisi-Cover
  • ISSN: 1300-6045
  • Yayın Aralığı: Yılda 6 Sayı
  • Başlangıç: 1995
  • Yayıncı: Kafkas Üniv. Veteriner Fak.
Sayıdaki Diğer Makaleler

Neonatal İshalli Buzağılarda Etiyolojik ve Predispoze Faktörler: 270 Olgu Serisinde Klinik Bir Çalışma

Kemal VAROL, Ömer DENİZ, Emre TÜFEKÇİ, Gencay EKİNCİ, İlknur KARACA BEKDİK, Ali Cesur ONMAZ, Öznur ASLAN, Mehmet ÇİTİL, İhsan KELEŞ, Vehbi GÜNEŞ

Dondurulmuş-Çözdürülmüş Boğa Spermasında Hızlı ve Yavaş Çözdürmenin Spermatolojik Parametreler ve Toluidin Mavisi Boyama ile Kromatin Kondenzasyonunun Belirlenmesi Üzerine Etkisi

Cumali KAYA, Merve Deniz TAĞRIKULU, Burcu ESİN, Mesut ÇEVİK

İnek Meme Bezinde Laktasyon Sonu ve İnvolusyon Döneminde Sitokeratin 8, 18 ve 19 Ekspresyonu

Bayram BAYRAM, Uğur TOPALOĞLU, Asuman ARKAŞ ALKLAY, Fatma ÇELENK, Nurşin AYDIN, Ömer ATALAR

Sofralık Yumurtalarda Depolama Öncesi Gam Arabik Kaplama Uygulamasının Yumurta Kalitesine Etkileri

Ali AYGÜN, Hacer ÇOKLAR, Vahdettin SARIYEL, Mehmet AKBULUT, Doğan NARİNÇ

Canlı Domuz Yavrularının Burun Boşluğundan İzole Edilen Glaesserella (Haemophilus) parasuis’in Virülans Genleri İle Serovar ve Sekans Tipleri Arasındaki İlişki

Ling PENG, Di-yan LIANG, Xiao-yan XI, Jia-yuan CHEN, Ling-hui LI

Sinek Larvalarından Elde Edilen Antimikrobiyal Peptidlerin Sarı Tüylü Piliçlerin Bağışıklığı Üzerine Etkisi

Jungang WANG, Hong SHEN, Xiancun ZENG, Jiaxu YAN, Shengjie GAO, Liying DAI, Zhengli WANG

Tibet Koyun Ovaryumlarında Proteinlerin Diferansiyel Ekspresyonu ve Farklı Foliküler Gelişim Aşamalarında Batın Büyüklüğü Özellikleriyle İlişkisi

Qian CHEN, Jianlei JIA, Liping ZHANG, Jinjin LI, Long REN, Yunfeng CUI

Sınıfl andırma Ağacı Algoritmaları ve Çok Değişkenli Uyarlanabilir Regresyon Uzanımları (MARS) Kullanılarak Kıl ve Honamlı Keçilerinin Fenotipik Karakterizasyonu

Yasin ALTAY

Adeziv ve Non-adeziv Travmatik Retikuloperitonitisli İneklerde Haptoglobin ve Seruloplazmin Düzeylerinin Prognostik Değeri

Enes AKYÜZ, Uğur AYDIN

Comparison of Bayesian Regularized Neural Network, Random Forest Regression, Support Vector Regression and Multivariate Adaptive Regression Splines Algorithms to Predict Body Weight from Biometrical Measurements in Th alli Sheep

Cem TIRINK