Hint Kazı (Anser indicus)’nın Kloaka Mikrobiyotasında Yaşa Bağlı Değişiklikler

Gastrointestinal mikrobiyota, patojenlere karşı bir engel görevi görerek, çoklu metabolik fonksiyonları yerine getirerek ve konakçı bağışıklık sisteminin gelişimini uyararak hayvan sağlığında önemli bir rol oynar. Bağırsak mikrobiyotasında yaşa bağlı dinamik değişimleri daha iyi anlayabilmek için, yetişkin ve civciv Hint kazlarının (Anser indicus) kloakal mikrobiyal yapısını araştırmak amacıyla 16S rRNA gen sekanslaması kullanıldı. Fusobacteria, Firmicutes, Proteobacteria ve Actinobacteria yetişkin ve civciv kazlar tarafından ortak paylaşılan bileşenlerdi. Yetişkinlerde Proteobacteria ve Cyanobacteria civcivlerde Fusobacteria ve Actinobacteria daha fazlaydı. Civcivlerde bulunan baskın genusun çoğu yetişkinlerinkinden farklıydı. Ayrıca, yetişkinler civcivlerden daha zengin ve daha farklı bakteriyel mikrobiyotaya sahipti. OTU seviyesinde kloakal mikrobiyotanın analizi, civcivler ve yetişkinler arasında bakteriyel topluluklar bakımından büyük ölçüde örtüşmenin olduğunu gösterdi. Bu örtüşen mikroorganizmaların, Hint kazlarının hayatları süresince gastrointestinal kanallarının ana mikroorganizmaları olduğu düşünülmektedir. Çalışma, Hint kazlarının bağırsak mikrobiyotasını belirlemiş ve yaş ile bağırsak mikrobiyotasında gelişen değişiklikleri belirlemek amacıyla yapılacak detaylı çalışmalar için bir adım atmıştır.

Age-related Changes in the Cloacal Microbiota of Bar-headed Geese (Anser indicus)

The gastrointestinal microbiota played an important role in animal health by acting as a barrier against pathogens, exerting multiple metabolic functions and stimulating the development of the host immune system. To better understand the age-related dynamic changes in gut microbiota, we used 16S rRNA genes sequencing to investigate the cloacal microbial communities of the adult and chick bar-headed geese (Anser indicus). Fusobacteria, Firmicutes, Proteobacteria, Actinobacteria were the main components shared by adults and chicks. The former had more Proteobacteria and Cyanobacteria and the latter had more Fusobacteria and Actinobacteria. At the genus level, most of the dominant genera found in chicks were different from those in adults. In addition, adults had richer and more diverse bacterial communities than chicks. Our analysis of the composition of cloacal microbiota at the OTUs level also showed very large overlap existed in the bacterial assemblages between chicks and adults. These overlapped microbes were considered as the major microbes in the gastrointestinal tracts of bar-headed geese throughout their whole life span. Taken together, the results of this study provided a first inventory of the gut microbiotas of chick bar-headed geese and represented a first step in a wider investigation of the sequential changes in gut microbiotas with ages in bar-headed geese.

___

  • 1. Colston TJ, Jackson CR: Microbiome evolution along divergent branches of the vertebrate tree of life: what is known and unknown. Mol Ecol, 25 (16): 3776-3800, 2016. DOI: 10.1111/mec.13730
  • 2. Lloyd-Price J, Abu-Ali G, Huttenhower C: The healthy human microbiome. Genome Med, 8:51, 2016. DOI: 10.1186/s13073-016-0307-y
  • 3. Malmuthuge N, Griebel PJ, Guan LL: The gut microbiome and its potential role in the development and function of newborn calf gastrointestinal tract. Front Vet Sci, 2:36, 2015. DOI: 10.3389/fvets.2015.00036
  • 4. Ahern PP, Faith JJ, Gordon JI: Mining the human gut microbiota for effector strains that shape the immune system. Immunity, 40 (6): 815-823, 2014. DOI: 10.1016/j.immuni.2014.05.012
  • 5. Kau AL, Ahern PP, Griffin NW, Goodman AL, Gordon JI: Human nutrition, the gut microbiome and the immune system. Nature, 474, 327336, 2011.
  • 6. Raza A, Bashir S, Tabassum R: Evaluation of cellulases and xylanases production from Bacillus spp. isolated from buffalo digestive system. Kafkas Univ Vet Fak Derg, 25 (1): 39-46, 2019. DOI: 10.9775/kvfd.2018.20280
  • 7. O’Mahony SM, Clarke G, Borre YE, Dinan TG, Cryan JF: Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav Brain Res, 277, 32-48, 2015. DOI: 10.1016/j.bbr.2014.07.027
  • 8. Lee WJ, Hase K: Gut microbiota-generated metabolites in animal health and disease. Nat Chem Biol, 10 (6): 416-424, 2014. DOI: 10.1038/ nchembio.1535
  • 9. Gill FB, Donsker DB: IOC World Bird List (v8.2). 2018. DOI: 10.14344/ IOC.ML.8.2
  • 10. Ley RE, Hamady M, Lozupone C, Turnbaugh PJ, Ramey RR, Bircher JS, Schlegel ML, Tucker TA, Schrenzel MD, Knight R, Gordon JI: Evolution of mammals and their gut microbes. Science, 320 (5883): 16471651, 2008. DOI: 10.1126/science.1155725
  • 11. Hird SM, Carstens BC, Cardiff SW, Dittmann DL, Brumfield RT: Sampling locality is more detectable than taxonomy or ecology in the gut microbiota of the brood-parasitic Brown-headed Cowbird (Molothrus ater). PeerJ, 2:e321, 2014. DOI: 10.7717/peerj.321
  • 12. Putignani L, Del Chierico F, Petrucca A, Vernocchi P, Dallapiccola B: The human gut microbiota: A dynamic interplay with the host from birth to senescence settled during childhood. Pediatr Res, 76 (1): 2-10, 2014. DOI: 10.1038/pr.2014.49
  • 13. Kreisinger J, Cizkova D, Kropackova L, Albrecht T: Cloacal microbiome structure in a long-distance migratory bird assessed using deep 16sRNA pyrosequencing. PloS One, 10 (9): e0137401, 2015. DOI: 10.1371/journal. pone.0137401
  • 14. Waite DW, Taylor MW: Exploring the avian gut microbiota: Current trends and future directions. Front Microbiol, 6:673, 2015. DOI: 10.3389/ fmicb.2015.00673
  • 15. Makivic L, Glisic M, Boskovic M, Djordjevic J, Markovic R, Baltic M, Sefer D: Performances, ileal and cecal microbial populations and histological characteristics in broilers fed diets supplemented with lignocellulose. Kafkas Univ Vet Fak Derg, 25 (1): 83-91, 2019. DOI: 10.9775/ kvfd.2018.20356
  • 16. Pan D, Yu Z: Intestinal microbiome of poultry and its interaction with host and diet. Gut Microb, 5 (1): 108-119, 2014. DOI: 10.4161/gmic.26945
  • 17. Waite DW, Taylor MW: Characterizing the avian gut microbiota: Membership, driving influences, and potential function. Front Microbiol, 5:223, 2014. DOI: 10.3389/fmicb.2014.00223
  • 18. Takekawa JY, Heath SR, Douglas DC, Perry WM, Javed S, Newman SH, Suwal RN, Rahmani AR, Choudhury BC, Prosser DJ, Yan BP, Hou YS, Batbayar N, Natsagdorj T, Bishop CM, Butler PJ, Frappell PB, Milsom WK, Scott GR, Hawkes LA, Wikelski M: Geographic variation in Bar-headed Geese Anser indicus: Connectivity of wintering areas and breeding grounds across a broad front. Wildfowl, 59, 102-125, 2009.
  • 19. Feare CJ, Kato T, Thomas R: Captive rearing and release of Barheaded Geese (Anser indicus) in China: A possible HPAI H5N1 virus infection route to wild birds. J Wildl Dis, 46, 1340-1342, 2010. DOI: 10.7589/00903558-46.4.1340
  • 20. Waite DW, Eason DK, Taylor MW: Influence of hand rearing and bird age on the fecal microbiota of the critically endangered kakapo. Appl Environ Microbiol, 80 (15): 4650-4658, 2014. DOI: 10.1128/AEM.00975-14
  • 21. Wang W, Cao J, Yang F, Wang X, Zheng S, Sharshov K, Li L: Highthroughput sequencing reveals the core gut microbiome of Bar-headed goose (Anser indicus) in different wintering areas in Tibet. Microbiology Open, 5 (2): 287-295, 2016. DOI: 10.1002/mbo3.327
  • 22. Wang W, Cao J, Li JR, Yang F, Li Z, Li LX: Comparative analysis of the gastrointestinal microbial communities of bar-headed goose (Anser indicus) in different breeding patterns by high-throughput sequencing. Microbiol Res, 182, 59-67, 2016. DOI: 10.1016/j.micres.2015.10.003
  • 23. Xenoulis PG, Gray PL, Brightsmith D, Palculict B, Hoppes S, Steiner JM, Tizard I, Suchodolski JS: Molecular characterization of the cloacal microbiota of wild and captive parrots. Vet Microbiol, 146 (3-4): 320-325, 2010. DOI: 10.1016/j.vetmic.2010.05.024
  • 24. Bolger AM, Lohse M, Usadel B: Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics, 30 (15): 2114-2120, 2014. DOI: 10.1093/bioinformatics/btu170
  • 25. Magoc T, Salzberg SL: FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics, 27 (21): 2957-2963, 2011. DOI: 10.1093/bioinformatics/btr507
  • 26. Edgar RC: UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat Methods, 10 (10): 996-998, 2013. DOI: 10.1038/ nmeth.2604
  • 27. Kuczynski J, Stombaugh J, Walters WA, Gonzalez A, Caporaso JG, Knight R: Using QIIME to analyze 16S rRNA gene sequences from microbial communities. Curr Protoc Microbiol, 36 (1): 10.7.1-10.7.20 2011.
  • 28. Caporaso JG, Bittinger K, Bushman FD, DeSantis TZ, Andersen GL, Knight R: PyNAST: A flexible tool for aligning sequences to a template alignment. Bioinformatics, 26 (2): 266-267, 2010. DOI: 10.1093/ bioinformatics/btp636
  • 29. Price MN, Dehal PS, Arkin AP: FastTree 2-approximately maximumlikelihood trees for large alignments. PloS One, 5 (3): e9490, 2010. DOI: 10.1371/journal.pone.0009490
  • 30. Wang Q, Garrity GM, Tiedje JM, Cole JR: Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol, 73 (16): 5261-5267, 2007. DOI: 10.1128/AEM.00062-07
  • 31. DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL: Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol, 72 (7): 5069-5072, 2006. DOI: 10.1128/AEM.03006-05
  • 32. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF: Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol, 75 (23): 7537-7541, 2009. DOI: 10.1128/AEM.01541-09
  • 33. van Dongen WF, White J, Brandl HB, Moodley Y, Merkling T, Leclaire S, Blanchard P, Danchin E, Hatch SA, Wagner RH: Age-related differences in the cloacal microbiota of a wild bird species. BMC Ecol, 13:11, 2013. DOI: 10.1186/1472-6785-13-11
  • 34. Barbosa A, Balague V, Valera F, Martinez A, Benzal J, Motas M, Diaz JI, Mira A, Pedrós-Alió C: Age-Related Differences in the Gastrointestinal Microbiota of Chinstrap Penguins (Pygoscelis antarctica). PloS One, 11 (4): e0153215, 2016. DOI: 10.1371/journal.pone.0153215
  • 35. Lavoie ET, Sorrell EM, Perez DR, Ottinger MA: Immunosenescence and age-related susceptibility to influenza virus in Japanese quail. Dev Comp Immunol, 31 (4): 407-414, 2007. DOI: 10.1016/j.dci.2006.07.009
  • 36. Dewar ML, Arnould JPY, Dann P, Trathan P, Groscolas R, Smith S: Interspecific variations in the gastrointestinal microbiota in penguins. MicrobiologyOpen, 2 (1): 195-204, 2013. DOI: 10.1002/mbo3.66
  • 37. Bennett DC, Tun HM, Kim JE, Leung FC, Cheng KM: Characterization of cecal microbiota of the emu (Dromaius novaehollandiae). Vet Microbiol, 166 (1-2): 304-310, 2013. DOI: 10.1016/j.vetmic.2013.05.018
  • 38. Roggenbuck M, Baerholm Schnell I, Blom N, Baelum J, Bertelsen MF, Sicheritz-Pontén T, Sørensen SJ, Gilbert MTP, Graves GR, Hansen LH: The microbiome of new world vultures. Nat Commun, 5:5498, 2014. DOI: 10.1038/ncomms6498
  • 39. Panda AK, Rama Rao SV, Raju MVLN, Sunder GS: Effect of butyric acid on performance, gastrointestinal tract health and carcass characteristics in broiler chickens. Asian Australas J Anim Sci, 22 (7): 10261031, 2009. DOI: 10.5713/ajas.2009.80298
  • 40. Middleton BA, van der Valk AG: The food habits of greylag and barheaded geese in the Keoladeo National Park, India. Wildfowl, 38, 94-102, 1987.
  • 41. González-Braojos S, Vela AI, Ruiz-De-Castañeda R, Briones V, Moreno J: Age-related changes in abundance of enterococci and enterobacteriaceae, in pied flycatcher (Ficedula hypoleuca) nestlings and their association with growth. J Ornithol, 153 (1): 181-188, 2012. DOI: 10.1007/s10336-011-0725-y
Kafkas Üniversitesi Veteriner Fakültesi Dergisi-Cover
  • ISSN: 1300-6045
  • Yayın Aralığı: Yılda 6 Sayı
  • Başlangıç: 1995
  • Yayıncı: Kafkas Üniv. Veteriner Fak.
Sayıdaki Diğer Makaleler

Evaluation of Early and Late Period Results of Polyester Film Use for the Repair of Ventral Hernias: An Experimental Study on Rabbit Models

Engin KILIÇ, Sadık YAYLA, Vedat BARAN, BERNA ERSÖZ KANAY, Celal Şahin ERMUTLU, Kemal KILIÇ, Mustafa GÖK, Serpil DAG

Farklı Yemlerle Beslenen Tibet Koyunlarında Büyüme Performansı ve Et Kalitesi

Ao REN, Bin ZHANG, Liang CHEN, Bin LI, Sheng-zhen HOU, Hong-dong JIE, Si-man AO, Chuan-she ZHOU, Ba-sang ZHUZHA, Xiao-ying CHEN, Zhi-liang TAN

Çin’in Güney Xinjiang Bölgesinde Rhipicephalus (Boophilus) microplus’a Karşı Yüksek Verimli Aşı İçin Ön Çalışma

Li ZHAO, Yong-Hong LIU, Kai-Rui LI, Bo HE, Fei LI, Lu-Yao ZHANG, Jiao-Jiao PAN, Qiang-Rong WANG

Sıçanlarda Pentilentetrazol İle İndüklenen Akut ve Kronik Epilepsi Modellerinde Thymus vulgaris L.’nin Etkileri

Gökhan OTO, Vedat SAĞMANLIGİL, Hasan UYAR, Yıldıray BAŞBUĞAN, Hülya ÖZDEMİR, Özlem Ergül ERKEÇ

Türkiye’de Perakende Dana Eti Fiyatlarındaki Değişimin Garch Yöntemiyle Belirlenmesi, 2014-2017

Mehmet Saltuk ARIKAN, Ahmet Cumhur AKIN, Mustafa Bahadır ÇEVRİMLİ, Mustafa Agah TEKİNDAL

Kil Modelleme ve Plastik Model Giydirme Tekniğinin Veteriner Anatomi Eğitimine Etkisi

Ahmet ÇOLAK, Burcu ONUK, Murat KABAK, Sedef Selviler SİZER, Serhat ARSLAN

Growth Performance and Meat Quality in Tibetan Sheep Fed Diets Differing in Type of Forage

Ao REN, Bin LI, Hong-dong JIE, Liang CHEN, Bin ZHANG, Si-man AO, Zhi-liang TAN, Chuan-she ZHOU, Ba-sang ZHUZHA, Xiao-ying CHEN, Sheng-zhen HOU

Güney Çin’de Hastalıklı ve Sağlıklı Domuzlarda Streptococcus suis’in Antimikrobiyal Direnci, Serotipleri ve Genetik Çeşitliliği

Xufu YANG, Ling PENG, Chongbo XU, Boting LIU

Bilgisayar Destekli Otomatik Yumurta Döllülük Kontrolü

Kerim Kürşat ÇEVİK, Mustafa BOĞA, Hasan Erdinç KOÇER, Aykut BURGUT

Age-related Changes in the Cloacal Microbiota of Bar-headed Geese (Anser indicus)

Wen WANG, Kirill SHARSHOV, Yuhui ZHANG, Linsheng GUI