Cloning and expression of cellulosimicrobium cellulans β-1,3-glucanase gene in lactobacillus plantarum to create new silage inoculant for aerobic stability

Bu çalışmada, rekombinant pTEG5 plazmit DNA’sına (pUC18 + Cellulosimicrobium cellulans’ın β-1,3-glukanaz geni) pLP3537 plazmitinin p353-2 kriptik plazmit bölgesinin aktarılması ile rekombinant pTE353-βG plazmit DNA’sı oluşturulmuştur. Rekombinant pTE353-βG plazmiti Lactobacillus plantarum’a elektroporasyon tekniği ile transfer edilmiştir. SacI enzimi ile kesilmiş pTE353-βG’nin agaroz jelde 1.9 kbç büyüklüğünde gen bandı üretmesinin yanı sıra, β-1,3-glukanaz genini şifreleyen 1.9 kbç büyüklüğündeki DNA parçasının PCR ile rekombinant vektörden amplifiye edilmesi genin plazmite entegrasyonunu göstermektedir. pTE353-βG içeren rekombinant L. plantarum kolonileri MRS-laminarin-agar plağında Congo-red boyaması ile β-1,3-glukanaz geninin eksprese olduğunu gösteren açık renkli pozitif zon vermişlerdir. Rekombinant suş tarafından üretilen enzim, C. cellulans enzimi ile aynı moleküler ağırlıkta aktivite bandı üretmiş ve böylece enzimin herhangi bir proteolitik parçalanmaya maruz kalmadığı anlaşılmıştır. Enzimatik analizler sonucunda L. plantarum tarafından üretilen β-1,3-glukanaz enziminin optimum sıcaklık ve pH değerleri sırasıyla 40°C ve 6.0 olarak bulunmuştur. Bu sonuçlar, rekombinant L. plantarum’un silajın aerobik bozulmasını önlemek için inokülant olarak düşünülebileceğini ortaya çıkarmıştır.

Aerobik stabilite için yeni silaj inokülantı oluşturmak amacıyla cellulosimicrobium cellulans β-1,3-glukanaz geninin lactobacillus plantarum’da klonlanması ve ekspresyonu

In this study, the recombinant plasmid pTE353-βG was created by inserting the p353-2 cryptic plasmid region of pLP3537 into pTEG5 recombinant plasmid contains pUC18 and β-1,3-glucanase gene of Cellulosimicrobium cellulans. The recombinant plasmid pTE353-βG was then introduced into Lactobacillus plantarum by electroporation. Insert analysis of pTE353-βG digested with SacI produced 1.9 kbp β-1,3-glucanase gene band on agarose gel as well as 1.9 kbp DNA encoding β-1,3-glucanase gene insert amplified on the recombinant vector via PCR indicated the integration of the gene into the plasmid. Recombinant L. plantarum colonies with pTE353-βG on MRS-laminarin-agar plate showed clear positive zones by Congo-red staining that revealed the expression of β-1,3-glucanase encoding gene. The β-1,3-glucanase enzyme of recombinant strain produced the same activity band with C. cellulans enzyme in terms of molecular weight, which showed the activity of secreted protein without any proteolytic degradation. Optimal temperature and pH values of L. plantarum β-1,3-glucanase have been determined 40ºC and 6.0 respectively, by enzymatic analysis. These results revealed that recombinant L. plantarum could be considered as a silage inoculant for aerobic spoilage of silage.

___

  • 1. Tanabe Y, Pang Z, Oda M: Cloning and sequencing of endo-1,3-β-glucanase from Cellulosimicrobium cellulans. J Biol Macromol, 8 (3): 60-63, 2008.
  • 2. Salazar O, Molitor J, Lienqueo ME, Asenjo JA: Overproduction, purification, and characterization of β-1,3-glucanase type II in Escherichia coli. Protein Express Purif, 23 (2): 219-225, 2001.
  • 3. Ferrer P, Halkier T, Hedegaard L, Savva D, Diers I, Asenjo JA: Nucleotide sequence of a β-1,3-glucanase isoenzyme IIA gene of Oerskovia xanthineolytica LL G109 (Cellulomonas cellulans) and initial characterization of the recombinant enzyme expressed in Bacillus subtilis. J Bacteriol, 178 (15): 4751-4757, 1996.
  • 4. Ferrer P: Revisiting the Cellulosimicrobium cellulans yeast-lytic β-1,3- glucanases toolbox: A review. Microb Cell Fact, 5 (10): 1-8, 2006.
  • 5. Salazar O, Asenjo JA: Enzymatic lysis of microbial cells. Biotechnol Lett, 29 (7): 985-994, 2007.
  • 6. Kitamura K, Yamamoto Y: Purification and properties of an enzyme, zymolyase, which lyses viable yeast cells. Arch Biochem Biophys, 153 (1): 403-406, 1972.
  • 7. Kung L: Silage fermentation and additives. In, Directfed Microbial Enzyme and Forage Additive Compendium. pp. 1-18, Miller Publishing Co. Minnetonka, 2001.
  • 8. Bates EEM, Gilbert HJ, Hazlewood GP, Huckle J, Laurie JI, Mann SP: Expression of a Clostridium thermocellum endoglucanase gene in Lactobacillus plantarum. App Environ Microbiol, 55 (8): 2095-2097, 1989.
  • 9. Zahiroddini H, Baah J, McAllister TA: Effects of microbial inoculants on the fermentation, nutrient retention, and aerobic stability of barley silage. Asian Australas J Anim Sci, 19 (10): 1429-1436, 2006.
  • 10. Driehuis F, Oude Elferink SJWH, Van Wikselaar PG: Fermentation characteristics and aerobic stability of grass silage inoculated with Lactobacillus buchneri, with or without homofermentative lactic acid bacteria. Grass Forage Sci, 56, 330-343, 2001.
  • 11. Kung L: Aerobic stability of silages. Proceedings of the Silage for Dairy Farms. University of Delaware, Department of Animal and Food Sciences, Harrisburg, PA, 2005.
  • 12. Holzer M, Mayrhuber E, Dannerr H, Braun R: The role of Lactobacillus buchneri in forage preservation. Trends Biotechnol, 21, 282-287, 2003.
  • 13. Teather RM, Wood PJ: Use of Congo red polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl Environ Microbiol, 43 (4): 777-780, 1982.
  • 14. Özcan BD, Özcan N, Baylan M, Güzel Aİ: Cloning and expression of β-1,3-glucanase gene from Cellulosimicrobium cellulans in Escherichia coli DH5α. Kafkas Univ Vet Fak Derg, 19 (3): 523-528, 2013, DOI: 10.9775/kvfd.2012.8225.
  • 15. Posno M, Heuvelmans PTHM, van Giezen MJF, Lokman BC, Leer RL, Pouwels PH: Complementation of the instability of Lactobacillus strains to utilize d-xylose with d-xylose catabolism-encoding genes of Lactobacillus pentosus. Appl Environ Microbiol, 57 (9): 2764-2766, 1991.
  • 16. Alegre MT, Rodriguez MC, Mesas JM: Transformation of Lactobacillus plantarum by electroporation with in vitro modified plasmid DNA. FEMS Microbiol Lett, 241, 73-77, 2004.
  • 17. Birnboim HC, Doly J: A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res, 7 (6): 1513-1523, 1979.
  • 18. Hardy KG: Bacillus Cloning Methods, In, Glover DM (Ed): DNA Cloning: A Practical Approach, Vol: II. 1-36, IRL Press Inc., Oxford, United Kingdom, 1985.
  • 19. Sambrook J, Fritsch EF, Maniatis T: Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory, 1989.
  • 20. Shen S-H, Chretien P, Bastien L, Slilaty SN: Primary sequence of the glucanase gene from Oerskovia xanthineolytica. J Biol Chem, 266 (2): 1058-1063, 1991.
  • 21. Laemmli UK: Cleauage of structural proteins during the assembly of the head of the bacteriophage T4. Nature, 227 (5259): 680-685, 1970.
  • 22. Saul DJ, Williams LC, Grayling RA, Chamley LW, Love DR, Bergquist PL: celB, a gene coding for a bifunctional cellulase from the extreme thermophile ‘Caldocellum saccharolyticum. Appl Environ Microbiol, 56 (10): 3117-3124, 1990.
  • 23. Ozcan N, Cunningham C, Haris WJ: Cloning of a cellulase gene from the rumen anaerobe Fibrobacter succinogenes SD35 and partial characterization of the gene product. Lett Appl Microbiol, 22 (1): 85-89, 1996.
  • 24. Lee SP, Morikawa M, Takagi M, Imanaka T: Cloning of the aapT gene and characterization of its product, α-amylase-pullulanase (AapT), from thermophilic and alkaliphilic Bacillus sp. strain XAL601. Appl Environ Microbiol, 60 (10): 3764-3773, 1994.
  • 25. Ikeda T, Yamazaki H, Yamashita K, Shinke R: The tetracycline inducible expression of alpha-amylase in Bacillus subtilis. J Ferment Bioengineer, 74, 58-60, 1992.
  • 26. Coral G, Arikan B, Unaldi MN, Guvenmez H: Some properties of crude carboxymethyl cellulase of Aspergillus niger Z10 wild-type strain. Turk J Biol, 26, 209-213, 2002.
  • 27. Miller GL: Use of dinitrosalicylic acid for determination of reducing sugar. Anal Chem, 31 (3): 424-426, 1959.
  • 28. Özcan N: Cloning and sequencing of a cellulase gene from Fibrobacter succinogenes SD35. PhD Thesis, Department of Molecular and Cell Biology, University of Aberdeen, Scotland, U.K., 1992.
  • 29. Scott JH, Schekman R: Lyticase: Endoglucanase and protease activities that act together in yeast cell lysis. J Bacteriol, 142 (2): 414-423, 1980.
  • 30. Ozduven ML, Kursun Onal Z, Koc F: The effects of bacterial inoculants and/or enzymes on the fermentation, aerobic stability and in vitro dry and organic matter digestibility characteristics of triticale silages. Kafkas Univ Vet Fak Derg, 16 (5): 751-756, 2010.
  • 31. Fitzsimons A, Hols P, Jore J, Leer RJ, O’Connell M, Delcour J: Development of an amylolytic Lactobacillus plantarum, silage strain expressing the Lactobacillus amylovorus alpha-amylase gene. Appl Environ Microbiol, 60, 3529-3535, 1994.
  • 32. Hols P, Ferain T, Garmyn D, Bernard N, Delcour J: Use of homologous expression-secretion signals and vector-free stable chromosomal integration in engineering of Lactobacillus plantarum for alpha-amylase and levanase expression. Appl Environ Microbiol, 60 (5): 1401-1413, 1994.
  • 33. Jones S, Warner PJ: Cloning and expression of alpha-amylase from Bacillus amyloliquefaciens in a stable plasmid vector in Lactobacillus plantarum. Lett Appl Microbiol, 11 (4): 214-219, 1990.
  • 34. Scheirlinck T, Mahillon J, Joos H, Dhaese P, Michiels F: Integration and expression of alpha-amylase and endoglucanase genes in the Lactobacillus plantarum chromosome. Appl Environ Microbiol, 55 (9): 2130-2137, 1989.
  • 35. Scheirlinck T, Meutter JD, Arnaut G, Joss H, Claeyssens M, Michiels F: Cloning and expression of cellulase and xylanase genes in Lactobacillus plantarum. Appl Microbiol Biotechnol, 33 (5): 534-541, 1990.
  • 36. Rossi F, Rudella A, Marzotto M, Dellaglio F: Vector-free cloning of a bacterial endo-1,4-β-glucanase in Lactobacillus plantarum and its effect on the acidifying activity in silage: Use of recombinant cellulolytic Lactobacillus plantarum as silage inoculant. Antonie van Leeuwenhoek, 80 (2): 139-147, 2001.
  • 37. Wanker E, Leer RJ, Pouwels PH, Schwab H: Expression of Bacillus subtilis levanase gene in Lactobacillus plantarum and Lactobacillus casei. Appl Microbiol Biotechnol, 43 (2): 297-303, 1995.
  • 38. Halbmayr E, Mathiesen G, Nguyen TH, Maischberger T, Peterbauer CK, Eijsink VG, Haltrich D: High-level expression of recombinant beta-galactosidases in Lactobacillus plantarum and Lactobacillus sakei using a Sakacin P-based expression system. J Agric Food Chem, 56 (12): 4710-4719, 2008.
  • 39. Brurberg MB, Haandrikman AJ, Leenhouts KJ, Venema G, Nes IF: Expression of a chitinase gene from Serratia marcescens in Lactococcus lactis and Lactobacillus plantarum. Appl Microbiol Biotechnol, 42 (1): 108-115, 1994.
  • 40. Cheong YH, Kim CY, Chun HJ, Moon BC, Park HC, Kim JK, Lee S, Han C, Lee SY, Cho MJ: Molecular cloning of a soybean class III beta-1,3-glucanase gene that is regulated both developmentally and in response to pathogen infection. Plant Sci, 154 (1): 71-81, 2000.
  • 41. Tian SP, Yao EJ, Deng X, Xu XB, Qin GZ, Chan ZL: Characterization and expression of β-1,3-glucanase genes in jujube fruit induced by the microbial biocontrol agent Cryptococcus laurentii. Phytopathology, 97 (3): 260-268, 2007.
  • 42. Yamaguchi T, Nakayama K, Hayashi T, Tanaka Y, Koike S: Molecular cloning and characterization of a novel β-1,3-glucanase gene from rice. Biosci Biotechnol Biochem, 66 (6): 1403-1406, 2002.
  • 43. Ferrer P, Hedegaard L, Halkier T, Diers I, Savva D, Asenjo JA: Molecular cloning of a lytic beta-1,3-glucanase gene from Oerskovia xanthineolytica LLG109. A beta-1,3-glucanase able to selectively permeabilize the yeast cell wall. Ann NY Acad Sci, 782, 555-565, 1996.
Kafkas Üniversitesi Veteriner Fakültesi Dergisi-Cover
  • ISSN: 1300-6045
  • Yayın Aralığı: Yılda 6 Sayı
  • Başlangıç: 1995
  • Yayıncı: Kafkas Üniv. Veteriner Fak.
Sayıdaki Diğer Makaleler

A case report: Isolation of Alysiella filiformis from pig's lungs

Jadranka ZUTIC, Vladimir RADOSAVLJEVIC, Oliver RADANOVIC, Vojin IVETIC, Ivan PAVLOVIC, Milenko ZUTIC

Effects of low doses of bisphenol A on primordial germ cells in zebrafish (Danio rerio) embryos and larvae

CANSU AKBULUT, Çağhan KIZIL, Nazan Deniz YÖN

The effects of dietary rosemary (Rosmarinus officinalis L.) oil supplementation on performance, carcass traits and some blood parameters of Japanese quail under heat stressed condition

MEHMET ÇİFTÇİ, Ülkü Gülcihan ŞİMŞEK, MEHMET ALİ AZMAN, İBRAHİM HALİL ÇERÇİ, Fadime TONBAK

Studies on chewing lice (Phthiraptera: Amblycera, Ischnocera) Species from Domestic and Wild Birds in Turkey

BİLAL DİK, ELİF YAMAÇ, UĞUR USLU

The effects of seasonal variation on the microbial-N flow to the small intestine and prediction of feed Intake in Grazing Karayaka sheep

MUSTAFA SALMAN, Nurcan ÇETİNKAYA, ZEHRA SELÇUK, BUĞRA GENÇ

The axon number of the rat sciatic nerve: A stereological study

Cennet RAGBETLİ, Mustafa YALAMA, İsmail KATI, Muzaffer Basak ULKAY, OSMAN BEHZAT BURAK ESENER, HASAN HAKAN BOZKURT, Necat KOYUN, Murat Çetin RAĞBETLİ

The effects of D-Ala2, D-Leu5-enkephalin (DADLE)'s continuous perfusion on erythrogram and biochemical profile in rats

İBRAHİM AKYAZI, EVREN ERASLAN, Deniz BALA AKTARAN, L. Zeynep ÇIRAKLI, ÜLKER ÇÖTELİOĞLU

Effects of FGA sponge and ovsynch based protocols on reproductive performance of fat-tailed ewes during the breeding season

RECAİ KULAKSIZ, ÖMER UÇAR, Ali DASKIN

The statistical analysis of some volumetric measurements in the japanese quails' head with different feather color: A computed tomography study

Mahmut DUYMUŞ, Yasin DEMIRASLAN, YALÇIN AKBULUT, Güneş ORMAN, KADİR ASLAN, SAMİ ÖZCAN

Effects of graded levels of crude glycerine addition to diets on growth performance, carcass traits and economic efficiency in broiler chickens

ADNAN ŞEHU, SEHER KÜÇÜKERSAN, BEHİÇ COŞKUN, BEKİR HAKAN KÖKSAL