Iğdır Sularında Mevsimlerin Arsenik, Bor ve Diğer Parametrelerin Değişimine Etkisi

Bu çalışmada, Iğdır ili ve ilçeleri Ağrı Dağı eteklerinde yer altı sondajı ve yerüstü doğal kaynak içme sularında Mangan (Mn), Kobalt (Co), Nikel (Ni), Bor (B) ve Arsenik (As) toksik elementlerin değişimi ICP-MS yöntemi kullanarak tespit edilerek incelendi. Çalışma kurak ve yağışlı aylarda yapıldı ve pH, toplam çözünmüş katı madde (TDS), elektriksel iletkenlik (EC), tuzluluk (Sal), Cl‾, NH4+ ve NO3‾, içme suyu örneklerinde mobil YSI Professional Plus multiparametresi kullanılarak gerçekleştirilimiştir. Analiz sonuçları Dünya Sağlık Örgütü (WHO), Amerikan Çevre Koruma Ajansı (EPA), Avrupa Birliği Standardı (Avrupa Birliği Standartları Konseyi: ECS) ve Ulusal İçme Suyu Standardı (TSE) sınır değerleri ile karşılaştırıldı. Analiz bölgelerindeki volkanik kayaçların Mn, Co, Ni, B ve As toksik element ICP-MS kütle sonuçları sırasıyla 357 mg kg-1, 16.5 mg kg-1, 22.4 mg kg -1, 5 mg kg-1 ve 3.8 mg kg-1 olarak tespit edilmiştir. Çalışma alanındaki içme sularındaki maksimum Mn, Co, Ni, As ve B konsantrasyonları Eylül 2017'de, kurak mevsimde sırasıyla 417.88 μg L-1, 0.35 μg L-1, 3.06 μg L-1, 37.16 μg L-1 ve 1185.45 μg L-1 olarak tespit edilmiştir. Mayıs 2017 ve Haziran 2017'de yağışlı mevsimde sırasıyla 133.67 μg L-1, 0.45 μg L-1, 2.26 μg L-1, 50.98 μg L-1 ve 1075.61 μg L-1 olarak belirlenmiştir. Kuru aylardan biri olan Eylül 2017'de içme suyu analiz örneğinde Mn, Co, Ni, As ve B toksik element ortalamalarındaki değişim Aralık 2017, Mart 2017 ve Haziran 2017'ye göre azalmıştır. Su kalitesi parametreleri üzerinde, EC ile Log [TDS] ve Log [Cl−] arasında parabolik olarak önemli miktarda pozitif etki belirlenmiş ve R2= 0.906 olarak hesaplanmıştır. Sonuç olarak, bu çalışmada su kaynaklarındaki toksik element miktarının mevsimlere bağlı olarak önemli değişimler gösterdiğini ortaya koyduk. Bu durum insan ve çevre sağlığı üzerinde olumsuz etkilerinin olabileceği muhakkaktır.

The Effect of The Seasons on The Variation of Arsenic, Boron, and Other Parameters in The Waters in Igdir

In this study, we investigated and determined the amount of various toxic elements like manganese (Mn), cobalt (Co), nickel (Ni), boron (B), and arsenic (As) in underground drilling and surface natural springs drinking waters in Iğdır province and districts Ararat Mountain side by the ICP- MS technique in dry and rainy months. The several properties of samples of drinking water, such as pH, total dissolved solids (TDS), electrical conductivity (EC), salinity (Sal), Cl‾, NH4+, and NO3‾ were measured with the mobile YSI Professional Plus multiparameter. The results of the analysis were compared to the limit values of the World Health Organization (WHO), the American Environmental Protection Agency (EPA), the European Union Standard (Council of the European Union Standards: ECS), and the National Drinking Water Standard (TSE). The mass amount of toxic elements of Mn, Co, Ni, B, and As in the analysis regions for volcanic rocks near water samples was detected to be 357 mg kg-1, 16.5 mg kg-1, 22.4 mg. kg -1, 5 mg kg-1, and 3.8 mg kg-1, respectively. The maximum concentration of Mn, Co, Ni, As, and B toxic elements in drinking water in the study area was detected in September 2017 in the dry season as 417.88 μg.L-1, 0.35 μg.L-1, 3.06 μg L-1, 37.16 μg.L-1, and 1185.45 μg L-1, respectively; and in May 2017 and June 2017, in the rainy season as 133.67 μg L-1, 0.45 μg L-1, 2.26 μg L-1, 50.98 μg L-1, and 1075.61 μg L-1, respectively. In the analysis sample of drinking water in September 2017, one of the dry months, the variation in the average of the Mn, Co, Ni, As, and B toxic elements decreased compared to December 2017, March 2017, and June 2017. Depending on the water quality parameters, a significant amount of positive effect among EC, Log [TDS], and Log [Cl−] parabolically were determined and calculated as R2=0.906. As a result, in this study, we revealed that the toxic element amount varies considerably depending on the seasons of the year.

___

  • Ahmed A.H., Rayaleh W. E., Zghibi A., Ouddane B. (2017). Assessment of chemical quality of ground water in coastal volcano sedimentary aquifer of Djibouti. Journal of African Earth Sciences, 131, 284-300.
  • Ayers, O.E., R.E. Patrick (1976) Hydrogen gas generators for use in chemical lasers, U.S. Pat. 3,948,699.
  • Bacquart T., Frisbie S., Mitchell E., Grigg L., Cole C., Small C., Sarkar B. (2015). Multiple inorganic toxic substances contaminating the groundwater of Myingyan Township. Myanmar: Arsenic. manganese. fluoride. iron. and uranium. Science of The Total Environment, 517, 232-245.
  • Belkhiri L., Mouni L., Boudoukha A. (2012). Geochemical evolution of groundwater in an alluvial aquifer: case of El Eulma aquifer. Journal of African Earth Sciences, 66e67. 46e55.
  • Bouchaou L., Michelot J.L., Vengosh A., Hsissou Y., Qurtobi M., Gaye C.B., Bullen T.D., Zuppi G.M. (2008). Application of multiple isotopic and geochemical tracers for investigation of recharge salinization, and residence time of water in the SousseMassa aquifer, southwest of Morocco, Journal of Hydro-environment, 352, 267e287.
  • Cardona A., Carrillo-Rivera J., Huizar-Alvarez R., Graniel-Castro E. (2004). Salinization in coastal aquifers of arid zones: an example from Santo Domingo, Baja California Sur, Mexico, Environmental Geology, 45, 350-366.
  • Chew, W.M., Murfree, J.A., Martignoni, P., Nappier, H.A., Ayers, O.E. (1979) Amine-borane as hydrogen generating propellants, U.S. Pat.4,157,927.
  • Debels P., Fıgueroa R., Urrutia R., Barra R., Niell X. (2005). Evaluation of water quality in the Chilla'n river (Central Chile) using physicochemical parameters and a modified water quality index. Environmental Monitoring and Assessment, 110, 301-322.
  • Demirtaş A. (2008). Drainage Water Quality in Iğdır PlaiN. Atatürk University Journal of The Agricultural Faculty, 39(1), 23-33.
  • EC (Council of the European Union), (2014). Council Directive 98/83/EC – on the quality of water intended for human consumption. Official Journal of the European Communities.
  • El Yaouti F., El Mandour A., Khattach D., Benavente J., Kaufmann O. (2009). Salinization processes in the unconfined aquifer of Bou-Areg (NE Morocco): a geostatistical. geochemical. and tomographic study. Applied Geochemistry, 24, 16e31.
  • Elwakeel K.Z., and Guibal E. (2015). Arsenic(V) sorption using chitosan/Cu(OH)2 and chitosan/CuO composite sorbents. Carbohydrate Polymers, 134, 190-204.
  • Environmental Protection Agency (Washington-EPA) (2018).
  • Fakir Y., Zerouali A., Aboufirassi M., Bouabdelli M. (2001). Exploitation et salinite des aquiferes de la Chaouia cotiere. littoral atlantique. Marocco. Journal of African Earth Sciences, 32, 791-801.
  • Frape S.K., Fritz P., Mcnutt R.H. (1984). Water-Rock İnteraction And Chemistry Of Ground-waters From The Canadian Shield. Geochimica et Cosmochimica Acta, 48, 1617-1627.
  • Gates J.B., Nicot J.P., Scanlon B.R. and Reedy R.C. 2011. Arsenic enrichment in unconfined sections of the southern Gulf Coast aquifer system. Applied Geochemistry, 26(4), 421-431.
  • Ghabayen S., McKee M., Kemblowski M., (2006). Ionic and isotopic ratios for identification of salinity sources and missing data in the Gaza aquifer. Journal of Hydro-environment, 318, 360-373.
  • Halim M.A., Majumder R.K., Nessa S.A., Hiroshiro Y., Sasaki K., Sahac B.B., Saepulohd A., Jinno K. (2010). Evaluation of processes controlling the geochemical constituents in deep groundwater in Bangladesh: Spatial variability on arsenic and boron enrichment. Journal of Hazardous Materials, 180, 50-62.
  • Iğdır-Meteorology Directorate, (2017) https://mgm.gov.tr/eng/forecast-cities.aspx
  • Iğdır Municipality Directorate of Water and Sewerage Affairs http://www.igdir.bel.tr/page.php?kat=67&altkat=13&konumid=2
  • Kannel P.R., Lee S., Lee Y.S., Kanel S.R., Khan S.P. (2007). Application of water quality indices and dissolved oxygen as indicators for river water classification and urban impact Assessment. Environmental Monitoring and Assessment, 132, 93-110.
  • Lambert R.S.J., Holland J.G., Owen P.F. (1974). Chemical petrology of a suite of calc-alkaline lavas from Mount Ararat. The Journal of Geology, 82, 419-438.
  • Lizcano I.J., Radha K.P., Fan. L.T., Erickson L.E. (1974). Identification of parameters in transient water quality models from stochastic data.
  • Madonia P., Cangemi M., Bellomo S., D'Alessandro W. (2013). Influence of volcanic activity on the quality of water collected in roof water catchment systems at Stromboli Island (Italy). Journal of Geochemical Exploration, 131, 28-36. Mohajeri, N., Robertson, T., Raisi, A.T. (2003) Hydrogen storage in amine borane complexes, orazine hydrogenation to cyclotriborazane: Molecular modelling and experimental borazane thermolysis, Fsec Final Report for Task III-B. Report date: December 1.
  • Moussa A.B., Zouari K., Valles V., Jlassi F. (2012). Hydrogeochemical analysis of groundwater pollution in an irrigated land in capbon peninsula. Arid Land Research and Management, 26, 1e14.
  • Munoz M.O., Werna H., Johnssona F., Bhattacharyaa P, Sracekc O., Thunvika R., Quintanilla J, Bundschuha J. (2013). Geogenic arsenic and other trace elements in the shallow hydrogeologic system of outhern Poopó Basin. Journal of Hazardous Materials, 262, 924-940.
  • Notsu K., Fujitanib T., Ui T., Matsudad J., Ercan T. (1995). Geochemical features of collision-related volcanic rocks in central and eastern Anatolia. Journal of Volcanology and Geothermal Research, 64, 171-192.
  • Pique A., Grandia F., Canals A. (2010). Processes releasing arsenic to groundwater in the Caldes de Malavella geothermal area NE Spain. Water Research, 44, 5618-5630.
  • Roccaro, P., Barone C., Mancini G., Vagliasindi F. G. A. (2007). Removal of manganese from water supplies intended for human consumption: a case study, Desalination - Journal, 210, 205-214.
  • Rowe J.G.L., Brantley S. L., Fernandez J.F., Borgia A. (1995). The chemical and hydrologic structure of Poas Volcano. Journal of Volcanology and Geothermal Research, 64, 233-267.
  • Sancho A. (2010). Geological and human influences on groundwater flow systems in range-and-basin areas: the case of the SelvaBasin, (Catalonia. NE Spain). PhD Thesis, Universitat Auto`noma de Barcelona.
  • Shrestha S., Kazama F. (2007). Assessment of surface water quality using multivariate statistical techniques: a case study of the Fuji river basin, Japan. Environ. Model. Softw, 22, 464-475.
  • Smedley P.L., Kinniburgh D.G. (2002). A review of the source.behaviour and distribution of arsenic in natural waters. Applied Geochemistry, 17(5), 517-568.
  • Tankersley K.B., Dunning N.P., Thress J., Owen L.A., Huff W.D., Fladd S.G., Bishop K.J., Plog S., Watson A.S., Carr C., Scarborough V.L. (2016). Evaluating soil salinity and water management in Chaco Canyon, New Mexico. Journal of Archaeological Science, 9, 94-104.
  • Teychene B., Collet G., Gallard H., Croue J.P. (2013). A comparative study of boron and arsenic (III) rejection from brackish water by reverse osmosis membranes. Desalination, 310, 109-114.
  • TSI - TS 266/T1 (2014). Water intended for human consumption.
  • TSI 266. (2005). Standards for Drinking Waters, Turkish Standards Institution, Ankara, Turkey.
  • Vengosh A., Kloppmann W., Marei A., Livshitz Y., Gutierrez A., Banna M., Guerrot C., Pankratov I., Raanan H. (2005). Sources of salinity and boron in the Gaza strip: natural contaminant flow in the southern Mediterranean coastal aquifer. Water Resources Research, 41. Watson I. C., Morin O.J., and Henthorne L. (2003). Desalting handbook for planners. Bureau of Reclamation. Desalination and Water Purification Research and Development Program Report, 72, 316 http://www.usbr.gov/research/AWT/report pdfs/report072.pdf (21.07. 2014).
  • Webster J.G. (1999). The source of arsenic (and other elements) in the Marbel -Matingao river catchment Mindanao Philippines. Geothermics, 28, 95-111.
  • Wilkie J.A., Hering J.G. (1996). Adsorption of arsenic onto hydrous ferric oxide: effects of adsorbate/adsorbent ratios and cooccurring solutes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 107, 97-110.
  • World Health Organization, (2011). Guidelines for drinking-water quality. fourth edition.
  • Zghibi A., Merzougui A., Zouhri L., Tarhouni J. (2014). Understanding groundwater chemistry using multivariate statistics techniques to the study of contamination in the Korba unconfined aquifer system of Cap-Bon (North-east of Tunisia). Journal of African Earth Sciences, 89, 1-15.