Geliştirilmiş Bulanık SWARA ve Bulanık CODAS Yöntemleriyle Tesis Yeri Seçimi: İmalat Sektöründe Bir Uygulama

Fabrika, depo gibi tesisler kuruldukları andan itibaren işletmeyi artık o bölgenin tüm koşullarına bağlı kılmaktadır. Yanlış bir karar, uzun yıllar sürecek problemleri beraberinde getirebilmektedir. Bu nedenle, birçok kriteri içerisinde barındıran yer seçimi süreci oldukça önemlidir. Makalemizde, kompozit pervane imalatı gerçekleştiren bir işletmenin, yeni tesis yerinin belirlenebilmesi için bir çalışma gerçekleştirilmiştir. Kriter ağırlıklarının belirlenmesinde Geliştirilmiş Bulanık Adım Adım Ağırlık Değerlendirme Oran Analizi (GB-SWARA), alternatiflerin değerlendirilmesinde ise Bulanık Birleştirilebilir Uzaklık Tabanlı Değerlendirme Yöntemi (B-CODAS) yöntemleri kullanılmıştır.

Facility location selection with Improved Fuzzy SWARA and Fuzzy CODAS methods: An application in the manufacturing industry

Facilities such as factories and warehouses are now dependent on all the conditions of that region as soon as they are established. A wrong decision can cause problems that last for years. As a result, this selection process, which includes numerous criteria, is critical. In our paper, we demonstrate a study that was conducted to determine the new facility location of a company that manufactures composite rotor blades. To determine criterion weights, an Improved Fuzzy Step-wise Weight Assessment Ratio Analysis (IMF-SWARA) method was used, and Fuzzy Combinative Distance-based Assessment (F-CODAS) methods were utilized to evaluate alternative locations.

___

  • Akpınar, M. E. (2022). Machine Selection application in a hard chrome plating industry using fuzzy SWARA and fuzzy ARAS methods. Yönetim ve Ekonomi, 29(1), 107-119. doi: https://doi.org/10.18657/yonveek.848811
  • Alvand, A., Mirhosseini, S. M., Ehsanifar, M., Zeighami, E. & Mohammadi, A. (2021). Identification and assessment of risk in construction projects using the integrated FMEA-SWARA-WASPAS model under fuzzy environment: a case study of a construction project in Iran. International Journal of Construction Management, 1-13. doi: https://doi.org/10.1080/15623599.2021.1877875
  • Ansari, Z. N., Kant, R. & Shankar, R. (2020). Evaluation and ranking of solutions to mitigate sustainable remanufacturing supply chain risks: A hybrid fuzzy SWARA-fuzzy COPRAS framework approach. International Journal of Sustainable Engineering, 13(6), 473-494. doi: https://doi.org/10.1080/19397038.2020.1758973
  • Ar, İ. M., Baki, B. ve Özdemir, F. (2014). Kuruluş yeri seçiminde bulanık AHS-VIKOR yaklaşımının kullanımı: Otel sektöründe bir uygulama. Uluslararası İktisadi ve İdari İncelemeler Dergisi, (13), 93-114. doi: https://doi.org/10.18092/ijeas.07453
  • Aro, J. L., Selerio Jr, E., Evangelista, S. S., Maturan, F., Atibing, N. M., & Ocampo, L. (2022). Fermatean fuzzy CRITIC-CODAS-SORT for characterizing the challenges of circular public sector supply chains. Operations Research Perspectives, 9, 100246. doi: https://doi.org/10.1016/j.orp.2022.100246
  • Arslan, H. M., Durak, İ. ve Özdemir, Y. (2021). Entropi-Aras hibrit yöntemi ile bilişim işletmeleri için en uygun teknopark bölgesinin belirlenmesi. Uluslararası Yönetim İktisat ve İşletme Dergisi, 17(3), 734-753. doi: https://doi.org/10.17130/ijmeb.839584
  • Asori, M., Dogbey, E., Morgan, A. K., Ampofo, S. T., Mpobi, R. K. J., & Katey, D. (2022). Application of GIS-based multi-criteria decision making analysis (GIS-MCDA) in selecting locations most suitable for siting engineered landfills–the case of Ashanti Region, Ghana. Management of Environmental Quality: An International Journal, 33 (3), 800-826. doi: https://doi.org/10.1108/MEQ-07-2021-0159
  • Aydınoğlu, A. Ç., Şişman, S. ve Ergül, İ. (2022). Sezgisel ağ tabanlı konum tahsis analiz algoritmaları ile tesis yeri optimizasyonu: İtfaiye tesisleri yer seçimi örneği. Journal of Turkish Operations Management, 6(1), 955-976.
  • Aytekin, A. (2018). Using hybrid method in selecting timber factory location. Drvna Industrija, 69(3), 273-281. doi: https://doi.org/10.5552/drind.2018.1736
  • Cedolin, M., Göker, N., Dogu, E., & Esra Albayrak, Y. (2017). Facility location selection employing fuzzy DEA and fuzzy goal programming techniques. In Advances in Fuzzy Logic and Technology 2017 (pp. 466-476). Springer, Cham. doi: https://doi.org/10.1007/978-3-319-66830-7_42
  • Chang, N. B., Parvathinathan, G., & Breeden, J. B. (2008). Combining GIS with fuzzy multicriteria decision-making for landfill siting in a fast-growing urban region. Journal of Environmental Management, 87(1), 139-153. doi: 10.1016/j.jenvman.2007.01.011
  • Chakraborty, S., Kumar, R. & Athawale, V. M. (2010). Facility location selection using the UTA method. The IUP Journal of Operations Management, 9(4), 21-34. Retrieved from https://ssrn.com/abstract=1744706
  • Chen, C. T. (2000). Extensions of the TOPSIS for group decision-making under fuzzy environment. Fuzzy sets and systems, 114(1), 1-9. doi: https://doi.org/10.1016/S0165-0114(97)00377-1
  • Chithambaranathan, P., Rajkumar, A., Prithiviraj, D., & Palpandi, M. (2022). A multi criteria decision based approach for facility location selection with flexible criteria weights. Materials Today: Proceedings. doi: https://doi.org/10.1016/j.matpr.2022.04.467
  • Chou, T. Y., Hsu, C. L., & Chen, M. C. (2008). A fuzzy multi-criteria decision model for international tourist hotels location selection. International journal of hospitality management, 27(2), 293-301. Doi: 10.1016/j.ijhm.2007.07.029
  • Dağ, S. ve Önder, E. (2013). Decision-making for facility location using VIKOR method. Journal of International Scientific Publication: Economy & Business, 7(1), 308-330. Retrieved from https://ssrn.com/abstract=2382495
  • Deveci, M., Simic, V., & Torkayesh, A. E. (2021). Remanufacturing facility location for automotive Lithium-ion batteries: An integrated neutrosophic decision-making model. Journal of Cleaner Production, 317, 128438. doi: https://doi.org/10.1016/j.jclepro.2021.128438
  • Dey, B., Bairagi, B., Sarkar, B., & Sanyal, S. K. (2016). Warehouse location selection by fuzzy multi-criteria decision making methodologies based on subjective and objective criteria. International Journal of Management Science and Engineering Management, 11(4), 262-278. doi: https://doi.org/10.1080/17509653.2015.1086964
  • Durak, İ., Arslan, H. M. ve Özdemir, Y. (2022). Application of AHP–TOPSIS methods in technopark selection of technology companies: Turkish case. Technology Analysis & Strategic Management, 34(10), 1109-1123. doi: https://doi.org/10.1080/09537325.2021.1925242
  • Effatpanah, S. K., Ahmadi, M. H., Aungkulanon, P., Maleki, A., Sadeghzadeh, M., Sharifpur, M., & Chen, L. (2022). Comparative analysis of five widely-used multi-criteria decision-making methods to evaluate clean energy technologies: a case study. Sustainability, 14(3), 1403. https://doi.org/10.3390/su14031403
  • Ertuğrul, İ., & Karakaşoğlu, N. (2008). Comparison of fuzzy AHP and fuzzy TOPSIS methods for facility location selection. The International Journal of Advanced Manufacturing Technology, 39(7), 783-795. doi: https://doi.org/10.1007/s00170-007-1249-8
  • Feng, J., Xu, S. X., Xu, G., & Cheng, H. (2022). An integrated decision-making method for locating parking centers of recyclable waste transportation vehicles. Transportation Research Part E: Logistics and Transportation Review, 157, 102569. doi: https://doi.org/10.1016/j.tre.2021.102569
  • Gao, Z., Yoshimoto, K., & Ohmori, S. (2010). Application of AHP/DEA to facility layout selection. In 2010 Third International Joint Conference on Computational Science and Optimization, China (Vol. 2, pp. 252-254). IEEE.
  • Ghasemian Sahebi, I., Arab, A., & Toufighi, S. P. (2020). Analyzing the barriers of organizational transformation by using fuzzy SWARA. Journal of Fuzzy Extension and Applications, 1(2), 84-97. doi: https://doi.org/10.22105/jfea.2020.249191.1010
  • Ghorabaee, M. K., Zavadskas, E. K., Turskis, Z., & Antucheviciene, J. (2016). A new combinative distance-based assessment (CODAS) method for multi-criteria decision-making. Economic Computation & Economic Cybernetics Studies & Research, 50(3), 25-44. Retrieved from https://eds.p.ebscohost.com/eds/ pdfviewer/pdfviewer?vid=0&sid=f2b23750-01d9-4c63-a3d0-f2178fa19221%40redis
  • Ghorabaee, M. K., Amiri, M., Zavadskas, E. K., Hooshmand, R., & Antuchevičienė, J. (2017). Fuzzy extension of the CODAS method for multi-criteria market segment evaluation. Journal of Business Economics and Management, 18(1), 1-19. doi: https://doi.org/10.3846/16111699.2016.1278559 Gorcun, O. F., Senthil, S., & Küçükönder, H. (2021). Evaluation of tanker vehicle selection using a novel hybrid fuzzy MCDM technique. Decision Making: Applications in Management and Engineering, 4(2), 140-162. doi: https://doi.org/10.31181/dmame210402140g
  • Görçün, Ö. F., Zolfani, S. H., & Çanakçıoğlu, M. (2022). Analysis of efficiency and performance of global retail supply chains using integrated fuzzy SWARA and fuzzy EATWOS methods. Operations Management Research, 1-25. doi: https://doi.org/10.1007/s12063-022-00261-z
  • Güneş, M. (2019). KOBİ’ler için girişimcilik. İstanbul: Türkmen Kitabevi.
  • Hanine, M., Boutkhoum, O., Tikniouine, A., & Agouti, T. (2016). Comparison of fuzzy AHP and fuzzy TODIM methods for landfill location selection. SpringerPlus, 5(1), 1-30. doi: https://doi.org/10.1186/s40064-016-2131-7
  • Maghsoodi, A.I, Maghsoodi, A.I, Poursoltan, P., Antucheviciene, J., & Turskis, Z. (2019). Dam construction material selection by implementing the integrated SWARA—CODAS approach with target-based attributes. Archives of Civil and Mechanical Engineering, 19(4), 1194-1210. doi: http://dx.doi.org/10.1016 /j.acme.2019.06.010
  • Kabadayı, N. ve Esen, T. E. Ç. (2021). Gri İlişkisel temelli TOPSIS yöntemi ile depo yeri seçimi. Anemon Muş Alparslan Üniversitesi Sosyal Bilimler Dergisi, 9(1), 169-184. doi: https://doi.org/10.18506/anemon.761624
  • Karagoz, S., Deveci, M., Simic, V., Aydin, N., & Bolukbas, U. (2020). A novel intuitionistic fuzzy MCDM-based CODAS approach for locating an authorized dismantling center: a case study of Istanbul. Waste Management & Research, 38(6), 660-672. doi: https://doi.org/10.1177/0734242X19899729
  • Karagöz, S., Deveci, M., Simic, V., & Aydin, N. (2021). Interval type-2 Fuzzy ARAS method for recycling facility location problems. Applied Soft Computing, 102, 107107. doi: https://doi.org/10.1016/j.asoc.2021.107107
  • Karaşan, A., Kaya, İ., & Erdoğan, M. (2020). Location selection of electric vehicles charging stations by using a fuzzy MCDM method: a case study in Turkey. Neural Computing and Applications, 32(9), 4553-4574. doi: https://doi.org/10.1007/s00521-018-3752-2
  • Kannan, D., Moazzeni, S., Mostafayi Darmian, S., & Afrasiabi, A. (2021). A hybrid approach based on MCDM methods and Monte Carlo simulation for sustainale evaluation of potential solar sites in east of Iran. Journal of Cleaner Production, 279, 122368. doi: https://doi.org/10.1016/j.jclepro.2020.122368
  • Karande, P., & Chatterjee, P. (2018). Desirability function approach for selection of facility location: A case study. In Proceedings of the International Conference on Industrial Engineering and Operations Management, Paris, France (pp. 1700-1708).
  • Kaul, A., Darbari, J. D., & Jha, P. C. (2020). A fuzzy MCDM model for facility location evaluation based on quality of life. In Soft Computing for Problem Solving (pp. 687-697). Springer, Singapore. doi: https://doi.org/10.1007/978-981-15-0035-0_56
  • Katrancı, A. ve Kundakcı, N. (2020). Bulanık CODAS yöntemi ile kripto para yatırım alternatiflerinin değerlendirilmesi. Afyon Kocatepe Üniversitesi Sosyal Bilimler Dergisi, 22(4), doi: 958-973. https://doi.org/10.32709/akusosbil.599757
  • Keleş, M. K., Özdağoğlu, A. ve Işıldak, B. (2021). Yolcular Açısından Havalimanlarının Değerlendirilmesine Yönelik Çok Kriterli Karar Verme Yöntemleriyle Bir Uygulama. Ankara Hacı Bayram Veli Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 23(2), 419-456. Erişim adresi: https://dergipark.org.tr/en/pub /ahbvuibfd/issue/64683/795201
  • Keršuliene, V., Zavadskas, E. K., & Turskis, Z. (2010). Selection of rational dispute resolution method by applying new step‐wise weight assessment ratio analysis (SWARA). Journal of Business Economics and Management, 11(2), 243-258. doi: https://doi.org/10.3846/jbem.2010.12
  • Kieu, P. T., Nguyen, V. T., Nguyen, V. T., & Ho, T. P. (2021). A spherical fuzzy analytic hierarchy process (SF-AHP) and combined compromise solution (CoCoSo) algorithm in distribution center location selection: A case study in agricultural supply chain. Axioms, 10(2), 53. doi: https://doi.org/10.3390/axioms10020053
  • Krajewski, L. J., Ritzman, L. P., & Malhotra, M. K. (2010). Operations management: Processes and supply chains. 9th Edition, New Jersey: Pearson. Çeviri Editörü: Semra Birgün, Nobel Yayınları, Ankara
  • Kumar, K., & Kumanan, S. (2011). An Integrated Fuzzy QFD and AHP Approach for Facility Location Selection. IUP Journal of Supply Chain Management, 8(4), 30-41. Retrieved from https://ssrn.com/abstract=2138805
  • Kuo, M. S., & Liang, G. S. (2011). A novel hybrid decision-making model for selecting locations in a fuzzy environment. Mathematical and Computer Modelling, 54(1-2), 88-104. doi: https://doi.org/10.1016/j.mcm.2011.01.038
  • Liu, Z., Huang, R., & Shao, S. (2022). Data-driven two-stage fuzzy random mixed integer optimization model for facility location problems under uncertain environment. AIMS Mathematics, 7(7), 13292-13312. https://doi.org/10.3934/math.2022734
  • Mavi, R. K., Goh, M., & Zarbakhshnia, N. (2017). Sustainable third-party reverse logistic provider selection with fuzzy SWARA and fuzzy MOORA in plastic industry. The International Journal of Advanced Manufacturing Technology, 91(5), 2401-2418. doi: https://doi.org/10.1007/s00170-016-9880-x
  • Miç, P., & Antmen, Z. F. (2021). A Decision-making model based on TOPSIS, WASPAS, and MULTIMOORA methods for university location selection Problem. SAGE Open, 11(3), 21582440211040115. doi: https://doi.org/10.1177/21582440211040115
  • Moniri, M. R., Tabriz, A. A., Ayough, A., & Zandieh, M. (2021). Turnaround project risk assessment using hybrid fuzzy SWARA and EDAS method: case of upstream oil process industries in Iran. Journal of Engineering, Design and Technology, 19(4), 966-988, doi: https://doi.org/10.1108/JEDT-07-2020-0287
  • Mucuk, İ. (2018). Modern işletmecilik (21. Baskı). İstanbul: Türkmen Kitabevi.
  • Nacar, E. N. ve Erdebilli, B. (2021). Tesis yeri seçimine yeni bir bakış: katmanlı çok kriterli karar verme yöntemi. Verimlilik Dergisi, (4), 103-117. doi: https://doi.org/10.51551/verimlilik.832480
  • Nong, T. N. M. (2022). A hybrid model for distribution center location selection. The Asian Journal of Shipping and Logistics, 38(1), 40-49. doi: https://doi.org/10.1016/j.ajsl.2021.10.003 Özbek, A. (2019). Çok Kriterli Karar Verme Yöntemleri ve Excel ile Problem Çözümü. 2. Baskı, Ankara: Seçkin Yayıncılık. ISBN:9789750245138
  • Panchal, D., Chatterjee, P., Shukla, R. K., Choudhury, T. & Tamosaitiene, J. (2017). Integrated fuzzy AHP-CODAS framework for maintenance decision in urea fertilizer industry. Economic Computation and Economic Cybernetics Studies and Research, 3(51), 179-196. Retrieved from https://ideas.repec.org/a/cys/ecocyb /v50y2017i3p179-196.html
  • Pourrezaie-Khaligh, P., Bozorgi-Amiri, A., Yousefi-Babadi, A., & Moon, I. (2022).: A case study. Applied Mathematical Modelling, 102, 243-267. doi: https://doi.org/10.1016/j.apm.2021.09.022
  • Rahman, M. S., Ali, M. I., Hossain, U., & Mondal, T. K. (2018). Facility location selection for plastic manufacturing industry in Bangladesh by using AHP method. International Journal of Research in Industrial Engineering, 7(3), 307-319. doi:https://doi.org/10.22105/riej.2018.135742.1049
  • Seker, S., & Aydin, N. (2020). Hydrogen production facility location selection for Black Sea using entropy based TOPSIS under IVPF environment. International Journal of Hydrogen Energy, 45(32), 15855-15868. doi: https://doi.org/10.1016/j.ijhydene.2019.12.183
  • Sennaroglu, B., & Celebi, G. V. (2018). A military airport location selection by AHP integrated PROMETHEE and VIKOR methods. Transportation Research Part D: Transport and Environment, 59, 160-173.doi: https://doi.org/10.1016/j.trd.2017.12.022
  • Simic, V., Karagoz, S., Deveci, M., & Aydin, N. (2021). Picture fuzzy extension of the CODAS method for multi-criteria vehicle shredding facility location. Expert Systems with Applications, 175, 114644. doi: https://doi.org/10.1016/j.eswa.2021.114644
  • Singh, S., Upadhyay, S. P., & Powar, S. (2022). Developing an integrated social, economic, environmental, and technical analysis model for sustainable development using hybrid multi-criteria decision making methods. Applied Energy, 308, 118235. doi: https://doi.org/10.1016/j.apenergy.2021.118235
  • Soyşekerci, S. ve Erturgut, R. (2011). Genel işletme. İstanbul: Kriter Yayınları.
  • Steyn, J. & Buys, C. (2017). Project optimisation techniques: Site selection for process plants, Owner Team Consulatation, Retrieved from https://www.ownerteamconsult.com/site-selection-for-process-plants/ Suman, M. N. H., MD Sarfaraj, N., Chyon, F. A., & Fahim, M. R. I. (2021). Facility location selection for the furniture industry of Bangladesh: Comparative AHP and FAHP analysis. International Journal of Engineering Business Management, 13, 18479790211030851. doi: https://doi.org/10.1177/18479790211030851
  • Terme, B., Çiçek, İ., & Kiraz, A. Entegre Bulanık AHP ve Bulanık VIKOR Yöntemleriyle Tesis Yeri Seçimi. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 37(2), 383-398. doi: https://doi.org/10.21605/ cukurovaumfd.1146098
  • Torkayesh, A. E., & Simic, V. (2022). Stratified hybrid decision model with constrained attributes: Recycling facility location for urban healthcare plastic waste. Sustainable Cities and Society, 77, 103543. doi: https://doi.org/10.1016/j.scs.2021.103543
  • Tripathi, A. K., Agrawal, S., & Gupta, R. D. (2021). Comparison of GIS-based AHP and fuzzy AHP methods for hospital site selection: a case study for Prayagraj City, India. GeoJournal, 1-22. doi: https://doi.org/10.1007/s10708-021-10445-y
  • Tuzkaya, G., Önüt, S., Tuzkaya, U. R., & Gülsün, B. (2008). An analytic network process approach for locating undesirable facilities: An example from Istanbul, Turkey. Journal of Environmental Management, 88(4), 970-983. doi: https://doi.org/10.1016/j.jenvman.2007.05.004
  • Türk, A., & Özkök, M. (2020). Shipyard location selection based on fuzzy AHP and TOPSIS. Journal of Intelligent & Fuzzy Systems, 39(3), 4557-4576. doi: https://doi.org/10.3233/JIFS-200522
  • Ulutaş, A. (2020). SWARA tabanlı CODAS Yöntemi ile kargo şirketi seçimi. MANAS Sosyal Araştırmalar Dergisi, 9(3), 1640-1647. doi: https://doi.org/10.33206/mjss.559351
  • Vojinović, N., Stević, Ž., & Tanackov, I. (2022). A Novel IMF SWARA-FDWGA-PESTEL analysis for assessment of healthcare system. Operational Research in Engineering Sciences: Theory and Applications, 5(1), 139-151. doi: https://doi.org/10.31181/oresta070422211v
  • Vrtagić, S., Softić, E., Subotić, M., Stević, Ž., Dordevic, M., & Ponjavic, M. (2021). Ranking road sections based on MCDM model: New ımproved Fuzzy SWARA (IMF SWARA). Axioms, 10(2), 92. doi: https://doi.org/10.3390/axioms10020092
  • Wang, C. N., Huang, Y. F., Chai, Y. C., & Nguyen, V. T. (2018). A multi-criteria decision making (MCDM) for renewable energy plants location selection in Vietnam under a fuzzy environment. Applied Sciences, 8(11), 2069. doi: https://doi.org/10.3390/app8112069
  • Xuan, H. A., Trinh, V. V., Techato, K., & Phoungthong, K. (2022). Use of hybrid MCDM methods for site location of solar-powered hydrogen production plants in Uzbekistan. Sustainable Energy Technologies and Assessments, 52, 101979. doi: https://doi.org/10.1016/j.seta.2022.101979
  • Yalçın, N., & Yapıcı Pehlivan, N. (2019). Application of the fuzzy CODAS method based on fuzzy envelopes for hesitant fuzzy linguistic term sets: A case study on a personnel selection problem. Symmetry, 11(4), 493,1-27. https://doi.org/10.3390/sym11040493
  • Yaşlıoğlu, M. M. ve Önder, E. (2016). Solving facility location problem for a plastic goods manufacturing company in turkey using AHP and TOPSIS methods. Yönetim Bilimleri Dergisi, 14(28), 223-249. Retrieved from https://dergipark.org.tr/en/download/article-file/660898
  • Yenilmezel, S. ve Ertuğrul, İ. (2022). Çok kriterli karar verme yöntemleri ile bir mermer fabrikası için kesintisiz güç kaynağı seçimi. Aksaray Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 14(3), 251-266. doi: 10.52791/aksarayiibd.1009308
  • Yeşilkaya, M. (2018). Çok Ölçütlü Karar Verme Yöntemleri ile Kağıt Fabrikası Kuruluş Yeri Seçimi. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 33(4), 31-44. doi: https://doi.org/10.21605/ cukurovaummfd.521775
  • Yong, D. (2006). Plant location selection based on fuzzy TOPSIS. The International Journal of Advanced Manufacturing Technology, 28(7), 839-844. doi: https://doi.org/10.1007/s00170-004-2436-5
  • Yücenur, G. N., Çaylak, Ş., Gönül, G., & Postalcıoğlu, M. (2020). An integrated solution with SWARA&COPRAS methods in renewable energy production: City selection for biogas facility. Renewable Energy, 145, 2587-2597. doi: https://doi.org/10.1016/j.renene.2019.08.011