Characterization of Nano-Structured Magnesium-Aluminum Ferrites Synthesized by Citrate-Gel Auto Combustion Method

Characterization of Nano-Structured Magnesium-Aluminum Ferrites Synthesized by Citrate-Gel Auto Combustion Method

An effort is made to find the solution to the new challenges of modification advancements in ferrite technologies. The hypothetical variation in the structural, magnetic, and electrical properties of cubic spinel magnesium aluminum ferrites introduced by the substitution of doping elements has been rationalized and proven. The outcome of aluminum substitution on the magnesium ferrites has been examined and investigated. Spinel ferrites having compositions of MgAlxFe2-xO4 (x = 0.1, 0.2, 0.3, 0.4) were prepared by the sol-gel auto-combustion method. The prepared sample’s characterization, such as scanning electron microscopy (SEM), DC electrical resistivity, AC electrical resistivity, and dielectric properties measurements, were tested using the respective instruments. The grain size and crystal size of all samples were measured from the micrographs of SEM and XRD Data. It is found that the average grain size is within the range of 300 nm - 550 nm for all different series that are formed, keeping the samples at 1100 °C sintering temperatures. A two-probe method experiment with a temperature range of 30 °C to 500 °C gives data on DC electrical resistivity. The Curie temperature depends on the sintering temperature, and it increases with increasing doping concentration. Also, doping influences grain size, which decreases with increasing concentration. Analyzing the SEM micrographs, it is found that the average grain size must decrease in tendency with increasing Al content. DC electrical resistivity exhibits excellent semiconducting behavior. Frequency dependence, dielectric constant, and dielectric loss factors were measured, keeping the frequency range of 75 Hz to 130 MHz at room temperature. The result shows that the dielectric constant (e) and dielectric loss tangent (tan™) decrease with the increase in frequency, while the AC resistivity and Q-factor increase. Comparing the electrical properties of four compositions, it can be suggested that the mixed ferrite, sample-4 (x = 0.3), shows the highest Q-factor of all at 1100 °C.

___

  • Ahmed, M., Hossain, M. D., Akter, S., Hossain, M. A., Sikder, S. S., Hakim, M. A., & Khan, M. N. I. (2022). Structural and magnetic properties of Co0·85Zn0.15YxFe2-xO4 ferrites. Physica B: Condensed Matter, 645, 414267. https://doi.org/10.1016/j.physb.2022.414267
  • Amiri, M., Salavati-Niasari, M., & Akbari, A. (2019). Magnetic nanocarriers: Evolution of spinel ferrites for medical applications. Advances in Colloid and Interface Science, 265, 29–44. https://doi.org/10.1016/j.cis.2019.01.003
  • Arulmurugan, R., Vaidyanathan, G., Sendhilnathan, S., & Jeyadevan, B. (2006). Mn–Zn ferrite nanoparticles for ferrofluid preparation: Study on thermal–magnetic properties. Journal of Magnetism and Magnetic Materials, 298(2), 83–94. https://doi.org/10.1016/j.jmmm.2005.03.002
  • Atassi, Y., & Tally, M. (2006). Low sintering temperature of Mg-Cu-Zn ferrite prepared by the citrate precursor method. Journal of the Iranian Chemical Society, 3(3), 242–246. https://doi.org/10.1007/BF03247214
  • Bhatu, S. S., Lakhani, V. K., Tanna, A. R., Vasoya, N. H., Buch, J. U., Sharma, P. U., Trivedi, N., Joshi, H. H., & Modi, K. B. (2007). Effect of nickel substitution on structural, infrared and elastic properties of lithium ferrite. In Indian Journal of Pure & Applied Physics (Vol. 45).
  • Buzea, C., Pacheco, I. I., & Robbie, K. (2007). Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases, 2(4), MR17–MR71. https://doi.org/10.1116/1.2815690
  • Dixit, G., Singh, J. P., Srivastava, R. C., Agrawal, H. M., & Chaudhary, R. J. (2012). Structural, Magnetic And Optical Studies Of nickel Ferrite Thin Films. Advanced Materials Letters, 3(1), 21–28. https://doi.org/10.5185/amlett.2011.6280
  • George, M., Mary John, A., Nair, S. S., Joy, P. A., & Anantharaman, M. R. (2006). Finite size effects on the structural and magnetic properties of sol–gel synthesized NiFe2O4 powders. Journal of Magnetism and Magnetic Materials, 302(1), 190–195. https://doi.org/10.1016/j.jmmm.2005.08.029
  • Giannakopoulou, T., Kompotiatis, L., Kontogeorgakos, A., & Kordas, G. (2002). Microwave behavior of ferrites prepared via sol–gel method. Journal of Magnetism and Magnetic Materials, 246(3), 360–365. https://doi.org/10.1016/S0304-8853(02)00106-3
  • Gimenes, R., Baldissera, M. R., da Silva, M. R. A., da Silveira, C. A., Soares, D. A. W., Perazolli, L. A., da Silva, M. R., & Zaghete, M. A. (2012). Structural and magnetic characterization of MnxZn1−xFe2O4 (x=0.2; 0.35; 0.65; 0.8; 1.0) ferrites obtained by the citrate precursor method. Ceramics International, 38(1), 741–746. https://doi.org/10.1016/j.ceramint.2011.07.066
  • Giri, J., Sriharsha, T., & Bahadur, D. (2004). Optimization of parameters for the synthesis of nano-sized Co 1−x Zn x Fe 2 O 4 , (0 ≤ x ≤ 0.8) by microwave refluxing. J. Mater. Chem., 14(5), 875–880. https://doi.org/10.1039/B310668C
  • Gorter, E. W. (1950). Magnetization in Ferrites: Saturation Magnetization of Ferrites with Spinel Structure. Nature, 165(4203), 798–800. https://doi.org/10.1038/165798a0
  • Gu, B. X. (2003). Magnetic properties and magneto-optical effect of Co0.5Fe2.5O4 nanostructured films. Applied Physics Letters, 82(21), 3707–3709. https://doi.org/10.1063/1.1573357
  • Hankare, P. P., Patil, R. P., Garadkar, K. M., Sasikala, R., & Chougule, B. K. (2011). Synthesis, dielectric behavior and impedance measurement studies of Cr-substituted Zn–Mn ferrites. Materials Research Bulletin, 46(3), 447–452. https://doi.org/10.1016/J.MATERRESBULL.2010.11.026
  • Hankare, P. P., Sankpal, U. B., Patil, R. P., Mulla, I. S., Lokhande, P. D., & Gajbhiye, N. S. (2009). Synthesis and characterization of CoCrxFe2−xO4 nanoparticles. Journal of Alloys and Compounds, 485(1–2), 798–801. https://doi.org/10.1016/j.jallcom.2009.06.087
  • Hankare, P. P., Vader, V. T., Patil, N. M., Jadhav, S. D., Sankpal, U. B., Kadam, M. R., Chougule, B. K., & Gajbhiye, N. S. (2009). Synthesis, characterization and studies on magnetic and electrical properties of Mg ferrite with Cr substitution. Materials Chemistry and Physics, 113(1), 233–238. https://doi.org/10.1016/j.matchemphys.2008.07.066
  • Iqbal, M. J., & Siddiquah, M. R. (2008). Electrical and magnetic properties of chromium-substituted cobalt ferrite nanomaterials. Journal of Alloys and Compounds, 453(1–2), 513–518. https://doi.org/10.1016/j.jallcom.2007.06.105
  • Islam, M. U., Abbas, T., Niazi, S. B., Ahmad, Z., Sabeen, S., & Chaudhry, M. A. (2004). Electrical behaviour of fine particle, co-precipitation prepared Ni–Zn ferrites. Solid State Communications, 130(5), 353–356. https://doi.org/10.1016/j.ssc.2004.02.019
  • Joudeh, N., & Linke, D. (2022). Nanoparticle classification, physicochemical properties, characterization, and applications: a comprehensive review for biologists. Journal of Nanobiotechnology, 20(1), 262. https://doi.org/10.1186/s12951-022-01477-8
  • Kamble, S. S., Jagtap, V. S., & Pingale, P. C. (2013). Synthesis of Mg0.48 Cu0.12 Zn0.40Fe2O4 ferrite and its aptness for multilayer chip component application. Ceramics International, 39(4), 3597–3601. https://doi.org/10.1016/j.ceramint.2012.10.187
  • Krishna, K. R., Kumar, K. V., & Ravinder, D. (2012a). Structural and Electrical Conductivity Studies in Nickel-Zinc Ferrite. Advances in Materials Physics and Chemistry, 02(03), 185–191. https://doi.org/10.4236/ampc.2012.23028
  • Kuznetsov, M. V., Pankhurst, Q. A., & Parkin, I. P. (1998). Self propagating high-temperature synthesis of chromium substituted magnesium zinc ferrites Mg0.5Zn0.5Fe2−xCrxO4 (0≤x≤1.5). Journal of Materials Chemistry, 8(12), 2701–2706. https://doi.org/10.1039/a804942d
  • Lakshman, A., Rao, P. S. V. S., Rao, B. P., & Rao, K. H. (2005). Electrical properties of In 3+ and Cr 3+ substituted magnesium–manganese ferrites. Journal of Physics D: Applied Physics, 38(5), 673–678. https://doi.org/10.1088/0022-3727/38/5/002
  • Lakshmi Ranganatha, V., Pramila, S., Nagaraju, G., Udayabhanu, Surendra, B. S., & Mallikarjunaswamy, C. (2020). Cost-effective and green approach for the synthesis of zinc ferrite nanoparticles using Aegle Marmelos extract as a fuel: catalytic, electrochemical, and microbial applications. Journal of Materials Science: Materials in Electronics, 31(20), 17386–17403. https://doi.org/10.1007/s10854-020-04295-6
  • Olsen, E., & Thonstad, J. (1999). Nickel ferrite as inert anodes in aluminium electrolysis: Part II Material performance and long-term testing. Journal of Applied Electrochemistry, 29(3), 301–311. https://doi.org/10.1023/A:1003464304488
  • Oñoro, M., Macías-Delgado, J., Auger, M. A., Hoffmann, J., de Castro, V., & Leguey, T. (2021). Powder Particle Size Effects on Microstructure and Mechanical Properties of Mechanically Alloyed ODS Ferritic Steels. Metals, 12(1), 69. https://doi.org/10.3390/met12010069
  • Pathania, A., Kumar, R., Rojhe, K., Goel, B., Aggarwal, S., & Mahto, D. (2021). Value stream mapping – Panacea for lead time reduction in ferrite core industry. Materials Today: Proceedings, 46, 2456–2461. https://doi.org/10.1016/j.matpr.2021.01.362
  • Patterson, A. L. (1939). The Scherrer Formula for X-Ray Particle Size Determination. Physical Review, 56(10), 978–982. https://doi.org/10.1103/PhysRev.56.978
  • Radwan, F. A., Ahmed, M. A., & Abdelatif, G. (2003). Screening effect of Ti4+ ions on the electrical conductivity and thermoelectric power of Mg ferrite. Journal of Physics and Chemistry of Solids, 64(12), 2465–2477. https://doi.org/10.1016/j.jpcs.2003.08.003
  • Saini, R., Saini, S., & Sharma, S. (2010). Nanotechnology: the future medicine. Journal of Cutaneous and Aesthetic Surgery, 3(1), 32–33. https://doi.org/10.4103/0974-2077.63301
  • Shokrollahi, H. (2008). Magnetic properties and densification of Manganese–Zinc soft ferrites (Mn1-xZnxFe2O4) doped with low melting point oxides. Journal of Magnetism and Magnetic Materials, 320(3–4), 463–474. https://doi.org/10.1016/j.jmmm.2007.07.003
  • Sontakke, A. D., & Purkait, M. K. (2021). A brief review on graphene oxide Nanoscrolls: Structure, Synthesis, characterization and scope of applications. Chemical Engineering Journal, 420, 129914. https://doi.org/10.1016/j.cej.2021.129914
  • Sujatha, Ch., Venugopal Reddy, K., Sowri Babu, K., RamaChandra Reddy, A., & Rao, K. H. (2013). Effect of sintering temperature on electromagnetic properties of NiCuZn ferrite. Ceramics International, 39(3), 3077–3086. https://doi.org/10.1016/j.ceramint.2012.09.087
  • Wang, J. (2006). Prepare highly crystalline NiFe2O4 nanoparticles with improved magnetic properties. Materials Science and Engineering: B, 127(1), 81–84. https://doi.org/10.1016/j.mseb.2005.09.003
  • Willey, R. J., Noirclerc, P., & Busca, G. (1993). PREPARATION AND CHARACTERIZATION OF MAGNESIUM CHROMITE AND MAGNESIUM FERRITE AEROGELS. Chemical Engineering Communications, 123(1), 1–16. https://doi.org/10.1080/00986449308936161
  • Zakaria, A. K. M., Asgar, M. A., Eriksson, S.-G., Ahmed, F. U., Yunus, S. M., Delaplane, R. G., Stanciu, V., & Svedlindh, P. (2004). Crystallographic and magnetic properties of the spinel type solid solution Zn0.4Co0.6AlxFe2−xO4 (0≤x≤1). Materials Research Bulletin, 39(7–8), 1141–1157. https://doi.org/10.1016/j.materresbull.2004.02.015
  • Zakaria, A. K. M., Asgar, M. A., Eriksson, S.-G., Ahmed, F. U., Yunus, S. M., & Rundlöf, H. (2003). The study of magnetic ordering in the spinel system ZnxNi1−xFeCrO4 by neutron diffraction. Journal of Magnetism and Magnetic Materials, 265(3), 311–320. https://doi.org/10.1016/S0304-8853(03)00280-4
  • Zhang, S.-C., Messing, G. L., & Borden, M. (1990). Synthesis of Solid, Spherical Zirconia Particles by Spray Pyrolysis. Journal of the American Ceramic Society, 73(1), 61–67. https://doi.org/10.1111/j.1151-2916.1990.tb05091.x