UNDERSTANDING THE BEHAVIOUR OF SULPHUR-CENTRED RADICALS DURING POLYMER SELF-HEALING

UNDERSTANDING THE BEHAVIOUR OF SULPHUR-CENTRED RADICALS DURING POLYMER SELF-HEALING

High-level ab initio molecular orbital theory calculations have been used to study self-healing mechanism of materials based on thiuram disulfides and their derivatives (S=C(Z)S–SC(Z)=S, for Z = CH3, NEt2, N(Et)CH2CH2OH, Ph, Bz), and the effects of these Z-substituents on their efficacy. The relative contributions of cross-over and reversible addition fragmentation chain transfer reactions were ascertained, and the likelihood of chain-breaking side reactions was assessed. To rationalize the results, the various stabilization energies of the radicals and closed-shell species were also evaluated. The study revealed that the self-healing mechanism of thiuram disulfides follows predominantly the cross-over reaction because of the high energies of intermediate radicals in the chain transfer mechanism. Based on the study, the most effective self-healing materials are predicted to contain amines as Z-groups, while those containing benzyl and its derivatives are most likely to undergo side reactions.

___

  • Caruso, M.M., et al., Mechanically-Induced Chemical Changes in Polymeric Materials. Chemical Reviews, 2009. 109(11): p. 5755-5798. Doi: 10.1021/cr9001353.
  • Murphy, E.B. and F. Wudl, The world of smart healable materials. Progress in Polymer Science, 2010. 35(1-2): p. 223-251. Doi:10.1016/j.progpolymsci.2009.10.006.
  • Urban, M.W., Stratification, stimuli-responsiveness, self-healing, and signaling in polymer networks. Progress in Polymer Science, 2009. 34(8): p. 679-687. Doi:10.1016/j.progpolymsci.2009.03.004.
  • Wu, D.Y., S. Meure, and D. Solomon, Self-healing polymeric materials: A review of recent developments. Progress in Polymer Science, 2008. 33(5): p. 479-522. Doi:10.1016/j.progpolymsci.2008.02.001.
  • Kolmakov, G.V., K. Matyjaszewski, and A.C. Balazs, Harnessing Labile Bonds between Nanogel Particles to Create Self-Healing Materials. Acs Nano, 2009. 3(4): p. 885-892. Doi: 10.1021/nn900052h.
  • Cordier, P., et al., Self-healing and thermoreversible rubber from supramolecular assembly. Nature, 2008. 451(7181): p. 977-980. Doi:10.1038/nature06669.
  • Wang, Q., et al., High-water-content mouldable hydrogels by mixing clay and a dendritic molecular binder. Nature, 2010. 463(7279): p. 339-343. Doi: 10.1038/nature08693.
  • Rowan, S.J., et al., Dynamic covalent chemistry. Angewandte Chemie-International Edition, 2002. 41(6): p. 898-952. Doi:10.1002/1521-3773(20020315)41:6<898::Aid-Anie898>3.0.Co;2-E.
  • Maeda, T., H. Otsuka, and A. Takahara, Dynamic covalent polymers: Reorganizable polymers with dynamic covalent bonds. Progress in Polymer Science, 2009. 34(7): p. 581-604. Doi: 10.1016/j.progpolymsci.2009.03.001.
  • Deng, G.H., et al., Covalent Cross-Linked Polymer Gels with Reversible Sol-Gel Transition and Self-Healing Properties. Macromolecules, 2010. 43(3): p. 1191-1194. Doi: 10.1021/ma9022197.
  • Nicolay, R., et al., Responsive Gels Based on a Dynamic Covalent Trithiocarbonate Cross-Linker. Macromolecules, 2010. 43(9): p. 4355-4361. Doi: 10.1021/ma100378r.
  • Kamada, J., et al., Redox Responsive Behavior of Thiol/Disulfide-Functionalized Star Polymers Synthesized via Atom Transfer Radical Polymerization. Macromolecules, 2010. 43(9): p. 4133-4139. Doi: 10.1021/ma100365n.
  • Amamoto, Y., et al., Programmed thermodynamic formation and structure analysis of star-like nanogels with core cross-linked by thermally exchangeable dynamic covalent bonds. Journal of the American Chemical Society, 2007. 129(43): p. 13298-13304. Doi: 10.1021/ja075447n.
  • Amamoto, Y., et al., Reorganizable Chemical Polymer Gels Based on Dynamic Covalent Exchange and Controlled Monomer Insertion. Macromolecules, 2009. 42(22): p. 8733-8738. Doi: 10.1021/ma901746n.
  • Chen, X.X., et al., A thermally re-mendable cross-linked polymeric material. Science, 2002. 295(5560): p. 1698-1702. Doi: DOI 10.1126/science.1065879.
  • Amamoto, Y., et al., Polymers through Reshuffling of Trithiocarbonate Units. Angewandte Chemie-International Edition, 2011. 50(7): p. 1660-1663. Doi: 10.1002/anie.201003888.
  • Ghosh, B. and M.W. Urban, Self-Repairing Oxetane-Substituted Chitosan Polyurethane Networks. Science, 2009.
  • (5920): p. 1458-1460. Doi: 10.1126/science.1167391.
  • Scott, T.F., et al., Photoinduced plasticity in cross-linked polymers. Science, 2005. 308(5728): p. 1615-1617. Doi: 10.1126/science.1110505.
  • Amamoto, Y., et al., Self-Healing of Covalently Cross-Linked Polymers by Reshuffling Thiuram Disulfide Moieties in Air under Visible Light. Advanced Materials, 2012. 24(29): p. 3975-3980. Doi: 10.1002/adma.201201928.
  • Garcia-Con, L.M., et al., A Sulfur-Sulfur Cross-Linked Polymer Synthesized from a Polymerizable Dithiocarbamate as a Source of Dormant Radicals. Angewandte Chemie-International Edition, 2010. 49(24): p. 4075-4078. Doi: 10.1002/anie.200906676.
  • Frisch, M., G. Trucks, and H. Schlegel, et al. GAUSSIAN09, Revision D. 01, Gaussian, Inc., Wallingford, CT, 2004. 90 Y. Zhao and DG Truhlar, MN-GFM 4.3. University of Minnesota, Minneapolis, 2009.
  • H.-J. Werner, P.J.K., G. Knizia, F. R. Manby, M. Schütz, P. Celani, W. Györffy, D. Kats, T. Korona, R. Lindh, A. Mitrushenkov, G. Rauhut, K. R. Shamasundar, T. B. Adler, R. D. Amos, A. Bernhardsson, A. Berning, D. L. Cooper, M. J. O. Deegan, A. J. Dobbyn, F. Eckert, E. Goll, C. Hampel, A. Hesselmann, G. Hetzer, T. Hrenar, G. Jansen, C. Köppl, Y. Liu, A. W. Lloyd, R. A. Mata, A. J. May, S. J. McNicholas, W. Meyer, M. E. Mura, A. Nicklaß, D. P. O'Neill, P. Palmieri, D. Peng, K. Pflüger, R. Pitzer, M. Reiher, T. Shiozaki, H. Stoll, A. J. Stone, R. Tarroni, T. Thorsteinsson, M. Wang . MOLPRO 2012.1. 2015 [cited 2015; Available from: http://www.molpro.net/.
  • Zhao, Y. and D.G. Truhlar, The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theoretical Chemistry Accounts, 2008. 120(1-3): p. 215-241. Doi: 10.1007/s00214-007-0310-x.
  • Henry, D.J., M.B. Sullivan, and L. Radom, G3-RAD and G3X-RAD: Modified Gaussian-3 (G3) and Gaussian-3X (G3X) procedures for radical thermochemistry. Journal of Chemical Physics, 2003. 118(11): p. 4849-4860. Doi: 10.1063/1.1544731.
  • Vreven, T. and K. Morokuma, Investigation of the S-0 -> S-1 excitation in bacteriorhodopsin with the ONIOM(MO : MM) hybrid method. Theoretical Chemistry Accounts, 2003. 109(3): p. 125-132. Doi: 10.1007/s00214-002-0418-y.
  • Atkins, P.W., Physical Chemistry. 4th ed. 1990, Oxford: Oxford University Press. ISBN 0–19–855284-X.
  • Kroschwitz, J.I., These formulae are described in full in Coote, M. L. , in Encyclopedia of Polymer Science and Technology, Wiley, Editor. 2004: New York. p. 319-371. ISBN: 978-0-471-27507-7.
  • Coote, M.L., C.Y. Lin, and A.A. Zavitsas, Inherent and transferable stabilization energies of carbon-and heteroatom-centred radicals on the same relative scale and their applications. Physical Chemistry Chemical Physics, 2014. 16(18): p. 8686-8696. Doi: 10.1039/c4cp00537f.
  • Coote, M.L. and A.A. Zavitsas, Using inherent radical stabilization energies to predict unknown enthalpies of formation and associated bond dissociation energies of complex molecules. Tetrahedron, 2016. Doi:10.1016/j.tet.2016.03.015.
  • Matsunaga, N., D.W. Rogers, and A.A. Zavitsas, Pauling's electronegativity equation and a new corollary accurately predict bond dissociation enthalpies and enhance current understanding of the nature of the chemical bond. Journal of Organic Chemistry, 2003. 68(8): p. 3158-3172. Doi: 10.1021/jo020650g.
  • Pauling, L., The nature of the chemical bond and the structure of molecules and crystals: an introduction to modern structural chemistry. Vol. 18. 1960: Cornell university press. ISBN-10: 0801403332.
  • De Vleeschouwer, F., et al., An Intrinsic Radical Stability Scale from the Perspective of Bond Dissociation Enthalpies: A Companion to Radical Electrophilicities. Journal of Organic Chemistry, 2008. 73(22): p. 9109-9120. Doi: 10.1021/jo802018b.
  • Degirmenci, I. and M.L. Coote, Comparison of Thiyl, Alkoxyl, and Alkyl Radical Addition to Double Bonds: The Unusual Contrasting Behavior of Sulfur and Oxygen Radical Chemistry. Journal of Physical Chemistry A, 2016. 120(10): p. 1750-1755. DOI: 10.1021/acs.jpca.6b00538.
  • Moad, G., E. Rizzardo, and S.H. Thang, Living Radical Polymerization by the RAFT Process - A Third Update. Australian Journal of Chemistry, 2012. 65(8): p. 985-1076. Doi: 10.1071/Ch12295.
  • Fischer, H. and L. Radom, Factors controlling the addition of carbon-centered radicals to alkenes-an experimental and theoretical perspective. Angewandte Chemie-International Edition, 2001. 40(8): p. 1340-1371. Doi: Doi 10.1002/1521-3773(20010417)40:8<1340::Aid-Anie1340>3.0.Co;2-#.
  • Greenwald, E.E., et al., A two transition state model for radical-molecule reactions: A case study of the addition of OH to C2H4. Journal of Physical Chemistry A, 2005. 109(27): p. 6031-6044.
  • Senosiain, J.P., S.J. Klippenstein, and J.A. Miller, Reaction of ethylene with hydroxyl radicals: A theoretical study. Journal of Physical Chemistry A, 2006. 110(21): p. 6960-6970.Doi: 10.1021/jp0566820.
  • Golden, D.M., The Reaction OH+C2H4: An Example of Rotational Channel Switching. Journal of Physical Chemistry A, 2012. 116(17): p. 4259-4266. Doi: 10.1021/jp302009t.
  • Zhu, R.S., J. Park, and M.C. Lin, Ab initio kinetic study on the low-energy paths of the HO+C2H4 reaction. Chemical Physics Letters, 2005. 408(1-3): p. 25-30. Doi: 10.1016/j.cplett.2005.03.133.