Bakır Oktoat: 2,2'arilmetilenbis(3-hidroksi-5,5-dimetil-2-sikloheksen-1-on) bileşiklerinin çabuk sentezi için ticari olarak bulunan ve ucuz bir homojen katalizör

2,2'-Arilmetilen bis(3-hidroksi-5,5-dimetil-2-sikloheksen-1-on) bileşiklerinin sentezi için pratik ve uygun bir yaklaşım, homojen katalizör olarak bakır oktoat kullanılarak gösterilmiştir. Bakır oktoat, ekonomik, ucuz ve ticari olarak bulunabilen bir katalizör olarak reaksiyon sürelerini etkin bir şekilde 16-50 dakikaya indirirken tepkime profilleri son derece temiz bulunmuştur ve su kaybetmiş ksanten heterohalkası dahil olmak üzere hiç bir yan ürüne rastlanmamıştır. Saf hedef bileşikler, basit bir work-up prosedürü ile çok iyi ve mükemmel verimlerle (%83-91) elde edilmiştir. Katalizör çözeltide geri dönüştürülmüş ve dört kere, aktivitede değişme olmaksızın kullanılabilmiştir.
Anahtar Kelimeler:

-

COPPER OCTOATE: A COMMERCIALLY AVAILABLE AND COST-EFFECTIVE HOMOGENEOUS CATALYST FOR THE FACILE SYNTHESIS OF 2,2’-ARYLMETHYLENEBIS(3-HYDROXY-5,5-DIMETHYL-2-CYCLOHEXENE-1-ONES)

A practical and convenient approach for the synthesis of 2,2’-arylmethylenebis(3-hydroxy-5,5-dimethyl-2-cyclohexene-1-ones) was presented using copper octoate as a homogeneous catalyst. Copper octoate as an eco-friendly, low cost, and commercially available catalyst, reduced reaction times effectively to (16-50 min) while the reaction profiles were absolutely clean and no side products including dehydrated xanthene heterocycle were detected. Pure target compounds were obtained in very good to excellent yields (83-91%) via straightforward work-up procedure. The catalyst was recycled in the form of solution, up to four times, with no noticeable drop in activity.
Keywords:

-,

___

  • Hegedus LS. Transition metals in the synthesis of complex organic molecules. 2nd ed: University Science Books: Sausalito; 1999.
  • Bates R. Organic synthesis using transition metals. 2nd ed. United Kingdom: Wiley & Sons, Ltd: Chichester; 2012.
  • Barnes HM, Amburgey TL, Sanders MG. Performance of copper naphthenate and its analogs as ground contact wood preservatives. Bioresour. Technol. 2005;96:1131-5.
  • Negishi A., Takahashi Y., Sakamoto R., Ozawa T., Kamimoto M. Thermoanalytical investigation of YBa2Cu3O7−y superconductor: III. Preparation from mixed 2-ethylhexanoates of yttrium, barium and copper 1989;140:41-8.
  • Nasu H. Barium yttrium copper oxide films with Tc > 70 K, prepared by the pyrolysis of 2-ethylhexanoates. J Mater Sci Lett. 1988;7/8:858-60.
  • Nasu H. Superconducting Y–Ba–Cu–O films with Tc > 70 K, prepared by thermal decomposition technique of Y-, Ba-, and Cu-2-ethylhexanoates. Chem Lett Chem Soc Japan. 1987;26:2403-4.
  • Li QF, Lu K, Yang QQ, Jin R. The effect of different metallic catalysts on the coreaction of cyanate/epoxy. J Appl Polym Sci. 2006;100:2293-302.
  • Kolomeyer GG, Oyloe JS, inventors; U. S. Patent 6835686 B2. 2004.
  • Lalic G, Aloise AD, Shair MD. An exceptionally mild catalytic thioester aldol reaction inspired by polyketide biosynthesis. J Am Chem Soc. 2003;125:2852-3.
  • Baran PS, Maimone TJ, Richter JM. Total synthesis of marine natural products without using protecting groups. 2007;446:404-8.
  • Baran PS, Richter JM, Lin DW. Direct coupling of pyrroles with carbonyl compounds: short enantioselective synthesis of (S)-ketorolac. Angew Chem, Int Ed. 2005;44:609-12.
  • Baran PS, Demartino MP. Intermolecular oxidative enolate heterocoupling. Angew Chem, Int Ed. 2006;45:7083-6.
  • Rao VDN, inventor; U.S. Patent 4670020. 1987.
  • Raje N, Naik VR, Reddy AVR. Thermal decomposition mechanism of synthesized copper octoate. J Therm Anal Calorim. 2013;112:187-92.
  • Doyle A, Felcman J, Gambardella MTDP, Verani CN, Tristao MLB. Anhydrous copper(II) hexanoate from cuprous and cupric oxides. The crystal and molecular structure of Cu2(O2CC5H11)4. Polyhedron. 2000;19:2621-7.
  • Lah N, Giester G, Lah J, Segedin P, Leban I. Copper(II) carboxylates with 2-aminopyridine. Synthesis, characterization and a study of the dimer–monomer equilibrium in acetonitrile solutions by VIS-spectroscopic and microcalorimetric titrations. New J Chem. 2001;25:753-9.
  • Raju R, Prasad K. Synthesis applications of 2-ethylhexanoic acid derived reagents. Tetrahedron. 2012;68:1341-9.
  • Fuller PH, Chemler SR. Copper(II) carboxylate-promoted intramolecular carboamination of alkenes for the synthesis of polycyclic lactams. Org Lett. 2007;9:5477-80.
  • Li-Bin L, Tong-Shou J, Li-Sha H, Meng L, Na Q, Tong-Shuang L. The reaction of aromatic aldehydes and 1,3-cyclohexanedione in aqueous media. Eur J Chem. 2006;3:117-21.
  • Sirkecioglu O, Talinli N, Akar A. Chemical aspects of santalin as a histological stain. J Chem Res. 1995:502-6.
  • Maharvi GM, Ali S, ;, Riaz N, Afza N, Malik A, Ashraf M, et al. Mild and efficient synthesis of new tetraketones as lipoxygenase inhibitors and antioxidants. J Enzym Inhib Med Chem. 2008;23:62-9.
  • Khan KM, Maharvi GM, Khan MTH, Shaikh AJ, Perveen S, Begum S, et al. Tetraketones: A new class of tyrosinase inhibitors. Bioorg Med Chem. 2006;14:344-51.
  • Merling G. Ueber Dihydroresorcin. Justus Liebigs Ann Chem. 1894;278:20-57.
  • Horning EC, Horning MG. Methone derivatives of aldehydes. J Org Chem. 1946;11:95-9.
  • Ilangovan A, Muralidharan S, Sakthivel P, Malayappasamy S, Karuppusamy S, Kaushik MP. Simple and cost effective acid catalysts for efficient synthesis of 9-aryl-1,8-dioxooctahydroxanthene. Tetrahedron lett. 2013;54:491-4.
  • Saha M, Pal AK, Nandi S. Pd(0) NPs: A novel and reusable catalyst for the synthesis of bis (heterocyclyl)methanes in water. RSC Adv. 2012;2:6397-400.
  • Li JT, Li YW, Song YL, Chen GF. Improved synthesis of 2,2’-arylmethylene bis(3-hydroxy-5,5-dimethyl-2-cyclohexene-1-one) derivatives catalyzed by urea under ultrasound. Ultrason Sonochem. 2012;19:1-4.
  • Fan XS, Li YZ, Zhang XY, Hu XY, Wang JJ. FeCl3.6H2O catalyzed condensation of aromatic aldehydes with 5,5-dimethyl-1,3-cyclohexanedione in ionic liquids. Chin J Org Chem. 2005;25:1482-6.
  • Kidwai M, Bansal V, Mothsra P, Saxena S, Somvanshi RK, Dey S, et al. Molecular iodine: A versatile catalyst for the synthesis of bis(4-hydroxycoumarin)methanes in water. J Mol Catal A: Chem. 2007;268:76-81.
  • Jung DH, Lee YR, Kim SH, Lyoo WS. New and general methods for the synthesis of arylmethylene bis(3-hydroxy-2-cyclohexene-1-one) and xanthene diones by EDDA and In(OTf)3-catalyzed one-pot domino Knoevenagel/Michael or Knoevenagel/Michael/cyclodehydration reactions. Bull Korean Chem Soc. 2009;30:1989-95.
  • Bayat M, Imanieh H, Hossieni SH. Synthesis of 2,2’-arylmethylene bis(3-hydroxy-5,5-dimethyl-2-cyclohexene-1-one) in aqueous medium at room temperature. Chin Chem Lett. 2009;20:656-9.
  • Rohr K, Mahrwald R. Catalyst-free tandem aldol condensation/Michael addition of 1,3-cyclohexanediones with enolizable aldehydes. Bioorg Med Chem Lett. 2009;19:3949-51.
  • Shi D, Wang Y, Lu Z, Dai G. Condensation of aromatic aldehydes with acidic methylene compounds without catalyst. Synth Commun. 2000;30:713-26.
  • Jin TS, Zhang JS, Wang AQ, Li TS. Solid-state condensation reactions between aldehydes and 5,5-cyclohexanedione by grinding at room temperature. Synth Commun. 2005;35:2339-45.
  • Kaupp G, Naimi-Jamal MR, Schmeyers J. Solvent-free Knoevenagel condensations and Michael additions in the solid state and in the melt with quantitative yield. Tetrahedron. 2003;59:3753-60.
  • Hamdi N, Puerta MC, Valerga P. Synthesis, structure, antimicrobial and antioxidant investigations of dicoumarol and related compounds. Eur J Med Chem. 2008;43:2541-8.
  • Labbe-Bois R, Laruelle C, Godfroid JJ. Quantitative structure-activity relationships for dicoumarol antivitamins K in the uncoupling of mitochondrial oxidative phosphorylation. J Med Chem. 1975;18:85-90.
  • Laruelle C, Godfroid JJ. A stereodynamic investigation of antivitamins K in the dicoumarol series. II. Differentation between the two hydroxyl groups by the nuclear Overhauser effect. Can J Chem. 1976;54:813-6.
  • Maghsoodlou MT, Habibi-Khorassani SM, Shahkarami Z, Maleki N, Rostamizadeh M. An efficient synthesis of 2,2’-arylmethylene bis(3-hydroxy-5,5-dimethyl-2-cyclohexene-1-one) and 1,8-dioxooctahydroxanthenes using ZnO and ZnO-acetyl chloride. Chin Chem Lett. 2010;21:686-9.
  • Kantevari S, Bantu R, L. N. HClO4-SiO2 and PPA-SiO2 catalyzed efficient one-pot Knoevenagel condensation, Michael addition and cyclo-dehydration of dimedone and aldehydes in acetonitrile, aqueous and solvent free conditions: scope and limitations. J Mol Catal A: Chem. 2007;269:53-7.
  • Jin TS, Wang AQ, Ma H, Zhang JS, Li TS. The reaction of aromatic aldehydes and 5,5-dimethyl-1,3-cyclohexanedione under solvent-free grinding conditions. Indian J Chem. 2006;45B:470-4.